ISSN   1004-0595

CN  62-1224/O4

高级检索

C/N共掺MoS2复合薄膜的微结构及其摩擦特性研究

Microstructure and Tribological Properties of C/N Co-Doping MoS2 Composite Film

  • 摘要: 采用射频磁控溅射法,在氩和氮混合气氛下共溅射二硫化钼和石墨靶制备不同石墨靶溅射功率的C/N共掺MoS2复合薄膜(MSCN). 通过EDS、XPS、SEM和TEM对薄膜的成分及微观组织结构进行分析;利用纳米压痕仪,高真空摩擦试验机和UMT-2摩擦试验机分析薄膜的力学和摩擦学性能,并探讨了C/N共掺及对薄膜结构、力学和摩擦学性能的影响. 结果表明:MSCN复合薄膜中的C含量随着石墨靶溅射功率的增加而增加;C/N共掺使得薄膜结构致密平整;当石墨靶溅射功率350 W时,薄膜呈现自形成纳米多层结构,该结构的出现使得薄膜最高硬度可达9.76 GPa,并且在高真空和大气环境下相比纯MoS2薄膜表现出更低的摩擦系数以及良好的高耐磨性.

     

    Abstract: In this study, the C/N co-doping MoS2 composite films (MSCN) with different sputtering power applied on graphite target were deposited by radio frequency magnetron sputtering of graphite and MoS2 targets in argon and nitrogen atmosphere. The influence of C/N co-doping on microstructure, mechanical and tribological properties of deposited films was analyzed using the various analytical techniques. The results show that increasing the sputtering power applied on graphite target led to the increase of carbon concentration in the MSCN composite films, resulting in the formation of dense structure and smooth surface. When the graphite target sputtering power reached 350 W, a self-assembled multilayer structure with periodicity in the nanometer scale formed. Benefiting from the compact and self-assembled multilayer structure, the maximum hardness of MSCN film reached up to 9.76 GPa, and corresponding friction experiment indicates that comparing to pure MoS2 film the composite films exhibited lower friction coefficient and high wear resistance both in high vacuum and ambient air conditions.

     

/

返回文章
返回