ISSN   1004-0595

CN  62-1224/O4

高级检索

基于原位和RNT技术的铜锌合金摩擦磨损性能

刘麟, 詹普杰, 刘文明, 刘雪东, 张志臣, Martin Dienwiebel

刘麟, 詹普杰, 刘文明, 刘雪东, 张志臣, Martin Dienwiebel. 基于原位和RNT技术的铜锌合金摩擦磨损性能[J]. 摩擦学学报, 2016, 36(5): 577-584. DOI: 10.16078/j.tribology.2016.05.007
引用本文: 刘麟, 詹普杰, 刘文明, 刘雪东, 张志臣, Martin Dienwiebel. 基于原位和RNT技术的铜锌合金摩擦磨损性能[J]. 摩擦学学报, 2016, 36(5): 577-584. DOI: 10.16078/j.tribology.2016.05.007
LIU Lin, ZHAN Pujie, LIU Wenming, LIU Xuedong, ZHANG Zhichen, MARTIN Dienwiebel. Friction and Wear Behavior of Copper-Zinc Alloy Based on In-Situ Holographic Microscopy and Radionuclide Technique[J]. TRIBOLOGY, 2016, 36(5): 577-584. DOI: 10.16078/j.tribology.2016.05.007
Citation: LIU Lin, ZHAN Pujie, LIU Wenming, LIU Xuedong, ZHANG Zhichen, MARTIN Dienwiebel. Friction and Wear Behavior of Copper-Zinc Alloy Based on In-Situ Holographic Microscopy and Radionuclide Technique[J]. TRIBOLOGY, 2016, 36(5): 577-584. DOI: 10.16078/j.tribology.2016.05.007
刘麟, 詹普杰, 刘文明, 刘雪东, 张志臣, Martin Dienwiebel. 基于原位和RNT技术的铜锌合金摩擦磨损性能[J]. 摩擦学学报, 2016, 36(5): 577-584. CSTR: 32261.14.j.tribology.2016.05.007
引用本文: 刘麟, 詹普杰, 刘文明, 刘雪东, 张志臣, Martin Dienwiebel. 基于原位和RNT技术的铜锌合金摩擦磨损性能[J]. 摩擦学学报, 2016, 36(5): 577-584. CSTR: 32261.14.j.tribology.2016.05.007
LIU Lin, ZHAN Pujie, LIU Wenming, LIU Xuedong, ZHANG Zhichen, MARTIN Dienwiebel. Friction and Wear Behavior of Copper-Zinc Alloy Based on In-Situ Holographic Microscopy and Radionuclide Technique[J]. TRIBOLOGY, 2016, 36(5): 577-584. CSTR: 32261.14.j.tribology.2016.05.007
Citation: LIU Lin, ZHAN Pujie, LIU Wenming, LIU Xuedong, ZHANG Zhichen, MARTIN Dienwiebel. Friction and Wear Behavior of Copper-Zinc Alloy Based on In-Situ Holographic Microscopy and Radionuclide Technique[J]. TRIBOLOGY, 2016, 36(5): 577-584. CSTR: 32261.14.j.tribology.2016.05.007

基于原位和RNT技术的铜锌合金摩擦磨损性能

基金项目: 

国家自然科学基金项目(51601021,51441001),江苏省自然科学基金项目(BK20140262)和江苏省高校自然科学研究项目(14KJB460001)资助。

详细信息
  • 中图分类号: TG115.5+8

Friction and Wear Behavior of Copper-Zinc Alloy Based on In-Situ Holographic Microscopy and Radionuclide Technique

  • 摘要: 采用基于原位全息显微技术和放射性核素技术的摩擦磨损试验装置,在润滑条件下对CuZn36/100Cr6配对摩擦体系中CuZn36的磨损行为进行了研究。利用装置中的全息显微镜对CuZn36磨痕表面微观形貌和粗糙度进行原位分析,利用放射性核素磨损量测量系统精确测量CuZn36的实时磨损量;利用扫描电镜对CuZn36及100Cr6钢球磨面进行观察和分析,利用X射线光电子能谱分析仪对CuZn36磨痕表层的元素化合态进行定量分析。结果表明:在试验法向载荷为1.9~3.0MPa范围内时,CuZn36表现出良好耐磨性,原因是CuZn36在试验过程中形成了具有高硬度和自润滑性的ZnO强化层,主要磨损方式为疲劳磨损。在较差磨合试验过程中,磨痕表面耐磨层一直处于“形成-破坏-再形成-再破坏”的动态过程,主要磨损方式为磨粒磨损和黏着磨损。
    Abstract: In this study, we investigated the friction and wear behavior of brass (i.e. 64% copper and 36% Zinc) sliding against 100Cr6 under lubricated conditions on a tribometer based on in-situ holographic microscopy and radionuclide technique. Microstructure evolution of friction surfaces were investigated by in-situ holographic microscopy, and surface of CuZn36 was measured real-time wear with high resolution by radionuclide technique. Worn surfaces of CuZn36 plates and 100Cr6 spheres were observed and analyzed by scanning electron microscopy. X-ray photoelectron spectroscopy depth profiles were obtained from the worn surface of CuZn36. The results indicate that the good runningin behaviors (i.e. lower friction and wear) of CuZn36 sliding against 100Cr6 were obtained with varying contact pressures (1.9~3.0 MPa). It suggests that the wear-resistant layers of ZnO were formed in the near-surface region of the wear surfaces, which had good characteristics of high hardness and self-lubrication. During poor running-in experiments, the wear-resistant layers were repeated forming and damaging in a dynamic process. Fatigue wear was the main behavior during good running-in experiments, and adhesion wear and abrasive wear were the main behaviors during poor running-in experiment.
  • [1]

    Perfilyev V, Moshkovich, Lapsker I, et al. Friction and wear of copper samples in the steady friction state[J]. Tribology International, 2010, 43:1449–1456.

    [2]

    Liu J, Liu C, Li F B, et al. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys[J]. Mater Sci Eng C, 2014, 35:392–400.

    [3]

    Dianez M J, Donoso E, Criado J M, et al. Study by DSC HRTEM of the aging strengthening of Cu-Ni-Zn-Al alloys[J]. Material & Design, 2016, 92:184–188.

    [4] 韩忠, 姚斌, 卢柯.纳米结构Cu中动态再结晶主导的磨损机制[J]. 金属学报, 2014, 50(2): 238–244.

    Han Zhong, Yao Bin, Lu Ke. Dynamic recrystallization dominated wear mechanism of nanostructured Cu[J]. Acta Metallurgica Sinica, 2014, 50(2): 238–244.

    [5] 胡兆稳, 刘焜, 刘小君, 等. 表面形貌变形对塑性成形滑动接触界面摩擦的影响[J]. 摩擦学学报, 2015, 35(4): 368–377.

    Hu Zhaowen, Liu Kun, Liu Xiaojun, et al. Influence of surface topography deformation on friction at sliding contact interface in metal forming[J]. Tribology, 2015, 35(4): 368–377.

    [6] 孙利平, 林高用, 王莉, 等. 易切削变形Zn-Cu-Bi合金的显微组织与性能[J]. 中国有色金属学报, 2011, 21(7):1547–1553.

    Sun Liping, Lin Gaoyong, Wang Li, et al. Microstructure and properties of free-cutting deformation Zn-Cu-Bi alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(7): 1547–1553.

    [7]

    Kimura T, Shimizu K, Terada K. Sliding wear characteristic evaluation of copper alloy for bearing[J]. Wear, 2007(34): 586–591.

    [8] 郎庆斌. 铜合金摩擦磨损性能及热变形行为研究[D]. 秦皇岛: 燕山大学, 2009.

    Lang Qingbin. Study on the friction and wear properties and the thermal deformance of copper alloy[D]. Qinhuangdao: Yanshan University, 2009.

    [9]

    Korres S, Dienwiebel M. Design and construction of a novel tribometer with on-line topography and wear measurement[J]. The Review of Scientific Instruments, 2010, 80: 063904.

    [10]

    Scherge M, Pöhlmann K, Gervé A. Wear measurement using radionuclide-technique (RNT)[J]. Wear, 2003, 254(9): 801–817.

    [11] 范尚武, 徐永东, 张立同, 等. C/SiC摩擦材料的制备及摩擦磨损性能[J]. 无机材料学报, 2006, 21(4): 927–934.

    Fan Shangwu, Xu Yongdong, Zhang Litong, et al. Preparation and tribological properties of C/SiC friction material[J].Journal of Inorganic Materials, 2006, 21(4): 927–934.

    [12] 郭俊德, 何世权, 马文林, 等. Fe-Mo-Ni-Cu-石墨高温自润滑复合材料的摩擦学性能研究[J]. 摩擦学学报, 2014, 34(6): 617–622.

    Guo Junde, He Shiquan, Ma Wenlin, et al. Tribological characteristics of Fe-Mo-Ni-Cu-graphite high temperature self-lubricating composites[J]. Tribology, 2014, 34(6): 617–622.

    [13] 李慧, 任书芳, 商剑, 等. Ti3 SiC2/inconel718摩擦副的高温摩擦学性能[J]. 摩擦学学报, 2013, 33(2): 129–134.

    Li Hui, Ren Shufang, Shang Jian, et al. Tribological properties of Ti3 SiC2-inconel 718 couple at elevated temperatures[J]. Tribology, 2013, 33(2): 129–134.

    [14]

    Feser T, Stoyanov P, Mohr F, et al. The running-in mechanisms of binary brass studied by in-situ topography measurements[J]. Wear, 2013, 303: 465–472.

    [15]

    Kong X L, Liu Y B, Qiao L J. Dry sliding tribological behaviors of nanocrystalline Cu-Zn surface layer after annealing in air[J]. Wear, 2004, 256: 747–753.

  • 期刊类型引用(1)

    1. 刘麟, 杨超, Martin Dienwiebel. 润滑条件下铜锌合金表面粗糙度对磨损率的影响. 摩擦学学报. 2017(05): 625-630 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  1553
  • HTML全文浏览量:  8
  • PDF下载量:  392
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-02-24
  • 修回日期:  2016-05-04
  • 发布日期:  2016-10-10

目录

    /

    返回文章
    返回