Nano-Mechanical Behavior and Phase Transformation Mechanism of Monocrystalline Silicon
-
摘要: 硅在大规模集成电路、MEMS/NEMS、半导体工业中具有不可替代作用,但是目前对硅的塑性变形及其相变机制的理解远未成熟。采用大规模分子动力学模拟研究(100)面的单晶硅在球形金刚石压头纳米压入过程中的纳米力学响应、相变过程和相分布规律。结果表明:在弹性变形阶段载荷-压深曲线与Hertz接触理论预测结果相吻合.两者的分离点准确地预示了塑性变形的发生。金刚石结构的Si-I相向体心结构的BCT5相转变导致了单晶硅初始的塑性变形。初始形成的BCT5相在次表面形成了一个倒置的金字塔形结构。Si-II相的形成则稍微滞后一些。在较大的载荷下BCT5在压入面上形成一个四重对称的图案分布。相对于小压头条件下大的BCT5相区,大压头更有利于Si-II相的发展。卸载后生成的高压Si-II相和BCT5相全部转变为非晶硅。研究结果确认了单晶硅纳米压入中BCT5相的存在;揭示了单晶硅塑性变形的相变机理,即Si-I转变为BCT5和Si-II相;并强调了Si-I相向BCT5相转变对于单晶硅塑性变形的重要作用。Abstract: Silicon (Si) plays an irreplaceable role in large scale integrated circuit, micro/nanoelectromechanical systems (MEMS/NEMS), and semiconductor industry. Its nanomechanical behavior and pressure phase transformation are always of immense interest and have been a focus of extensive experimental and theoretical researches for a few decades. We performed a large-scale molecular dynamics simulation of the nanoindentation on Si(100) surface to examine the nano-mechanical behavior and phase transformation mechanism of monocrystalline silicon. In the simulations, a large indenter with radius of ~21.73nm was utilized in order to approach the experimental indenter size. Benefit from the large indenter, the detailed phase transformation process and phase distribution were analyzed, and the structure of the high pressure phase was characterized by radial distribution function (RDF) and bond angle distribution function (ADF). The results showed that the load-depth curve in elastic stage was agreed well with the prediction of the Hertz contact theory. The mismatch between simulated load-depth curve and Hertz contact accurately indicated the onset of plastic deformation, which was corresponding with the initial phase transition from Si-I phase with diamond structure to bct5 phase with body-centered cubic (bcc). The initial bct5 phase generated an inverted pyramid on the subsurface. Increasing the indentation load, the Si-II phase was generated from the Si-I phase, and enlarged beneath the indenter. The bct5 phase formed a fourfold pattern along the indentation orientation. Compared with the small indenter, the large indenter prompted the grown of the Si-II phase, which is the one reason why the BCT5 phase almost cannot be probed in experiment. After unloading, both the Si-II and bct5 phases transformed into amorphous phase. The results validated the existence of bct5 in the nano-indentation process of monocrystal silicon; and revealed the phase transformation mechanism of the plastic deformation.
-
-
[1] Kiran M S R N, Haberl B, Bradby J E, et al. Semiconductors and semimetals[M]. Elsevier, 2015:165–203.
[2] 黄健萌, 陈晶晶, 李凝.两种不同形状压头与单晶铜基体间接触力和摩擦力的纳观分析[J].摩擦学学报, 2015, 35(3): 308–314. Huang Jianmeng, Chen Jingjing, Li Ning. Analysis of the contact and friction force behaviour between different indenter shape and substrate on atomic scale[J]. Tribology, 2015, 35(3): 308–314.
[3] 赵泽钢, 田达晰, 赵剑, 等.应力预释放对单晶硅片的压痕位错滑移的影响[J].物理学, 2015, 64(20): 208101-1–6. Zhao Zegang, Tian Daxi, Zhao Jian, et al. Effect of prior stress-relief on the gliding of indentation dislocations on silicon wafers[J]. Acta Phys Sin, 2015, 64(20): 208101-1–6.
[4] Bradby J E, Williams J S, Wong-Leung J, et al. Mechanical deformation in silicon by micro-indentation[J]. Journal of Materials Research, 2001, 16(5): 1500–1507.
[5] Jang J I, Lance M J, Wen S Q, et al. Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior[J]. ACTA Materialia, 2005, 53(6): 1759–1770.
[6] Chrobak D, Tymiak N, Beaber A, et al. Deconfinement leads to changes in the nanoscale plasticity of silicon[J]. Nature Nanotechnology, 2011, 6(8): 480–484.
[7] Ruffell S, Bradby J E, Williams J S, et al. An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon[J]. Journal of Materials Research, 2007, 22(3): 578–586.
[8] Gupta M C, Ruoff A L. Static compression of silicon in the[100] and in the[111] directions[J]. Journal of Applied Physics, 1980, 51(2): 1072–1075.
[9] Bradby J E, J S Williams, M V Swain. In situ electrical characterization of phase transformations in Si during indentation[J]. Physical Review B, 2003, 67(8):283–287.
[10] Eyben P, Clemente F, Vanstreels K, et al. Analysis and modeling of the high vacuum scanning spreading resistance microscopy nanocontact on silicon[J]. Journal of Vacuum Science and Technology B, 2010, 28(2): 401–406.
[11] Kim D E, S I Oh. Deformation pathway to high-pressure phases of silicon during nanoindentation[J]. Journal of Applied Physics, 2008, 4(1):013502-1–013502-6.
[12] Kim D E, S I Oh. Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation[J]. Nanotechnology, 2006, 17(9): 2259–2265.
[13] Gerbig Y B, Michaels C A, Forster A M, et al. In situ observation of the indentation-induced phase transformation of silicon thin films[J]. Physical Review B, 2012, 85(10):1092–1097.
[14] Gerbig Y B, S J Stranick, R F Cook. Direct observation of phase transformation anisotropy in indented silicon studied by confocal raman spectroscopy[J]. Physical Review B, 2011, 83(20):5314–5317.
[15] Domnich V, Gogotsi Y. Phase transformations in silicon under contact loading[J]. Reviews on Advanced Materials Science, 2002, 76(1):1015–1028.
[16] Zarudi I, Zhang L C, Cheong W, et al. The difference of phase distributions in silicon after indentation with berkovich and spherical indenters[J]. ACTA Materialia, 2005, 53(18): 4795–4800.
[17] Piltz R O, Maclean J R, Clark S J, et al. Structure and properties of silicon-XII: -a complex tetrahedrally bonded phase[J]. Physical Review B, 1995, 52(6): 4072–4085.
[18] Chang L, Zhang L C. Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads[J]. Material Science and Engineering A, 2009, 506: 125–129.
[19] Gerbig Y B, Stranick S J, Morris D J, et al. Effect of crystallographic orientation on phase transformations during indentation of silicon[J]. Journal of Materials Research, 2009, 24(3): 1172–1183.
[20] J Z Hu, I L Spain. Phases of silicon at high pressure[J]. Solid State Communications, 1984, 51(5): 263–266.
[21] Ivashchenko, V I, P E A. Turchi and V I Shevchenko, simulations of indentation-induced phase transformations in crystalline and amorphous silicon[J]. Physical Review B, 2008, 78(3): 035205.
[22] M C Gupta, A L Ruoff. Static compression of silicon in the[100] and in the[111] directions[J]. J Appl Phys, 1980, 51:1072.
[23] Gerbig Y B, Stranick S J, Morris D J, et al. Effect of rystallographic orientation on phase transformations during indentation of silicon[J]. Journal of Materials Research, 2009, 24(3): 1172–1183.
-
期刊类型引用(3)
1. 郭彦军,杨晓京,秦思远,周哲. 非晶层对单晶锗纳米切削影响的分子动力学研究(英文). 稀有金属材料与工程. 2022(02): 436-441 . 百度学术
2. 陈爱莲,隆界龙,陈杨. 非晶SiO_2团簇与单晶硅基底微观接触的分子动力学模拟. 常州大学学报(自然科学版). 2020(05): 1-7 . 百度学术
3. 尹念,张执南,张俊彦. 导电滑环Au涂层摩擦磨损行为的分子动力学模拟. 摩擦学学报. 2018(01): 108-114 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 1670
- HTML全文浏览量: 20
- PDF下载量: 601
- 被引次数: 8