Fabrication and Drag Reduction of Controllable Wetting Surfaces
-
摘要: 设计合成不同结构的自组装分子,使其可以在不改变表面粗糙度的情况下改变表面的润湿性能;利用低表面能涂层修饰粗糙表面得到超疏水表面.采用流变仪和水洞试验分别在层流和湍流流动状态下测试了具有不同润湿行为的亲、疏水材料的减阻性能.结果表明:在层流流动状态,随着不同表面的接触角从13°增加到45°、113°和161°,减阻率随之从1.8%增大到7.2%、7.9%和14.9%;在湍流流动状态下,自组装涂层接触角为13°、45°和113°的三组模型的平均减阻率为0.8%、1.9%和6.8%,最大减阻率分别可达3.6%、9.2%和18.0%.两种流体流动中均存在材料表面水接触角增加减阻效率增大的行为.Abstract: On the one hand,3 types of dopamine based copolymers were synthesized which can vary the surface wettability of smooth surface, on the other hand,superhydrophobic surface was fabricated by coating low surface energy material on rough surface. The drag reduction properties of samples with different wettability were measured in laminar flow and turbulent flow by rheometer and water tunnel equipments,respectively. It was found that drag reduction of samples increased from 1.8% to 7.2%,7.9% and 14.9% with an increase of contact angles from 13° to 45°,113° and 161° in the laminar flow,and the mean values of drag reduction of the first three samples increased from 0.8% to 1.9% and 6.8% (corresponding maximum values were 3.6%,9.0% and 18%,respectively) in turbulent flow. It was concluded that the increase of water contact angle of material surface resulted in an increase of drag reduction in both laminar and turbulent flow.
-
Keywords:
- drag reduction /
- laminar flow /
- turbulent flow /
- boundary slip /
- hydrophilicity/hydrophobicity
-
[1] 柯贵喜,潘光,黄桥高,等. 水下减阻技术研究综述[J]. 力学进展,2009,39(5): 546-554. Ke G X,Pan G,Huang Q G,et al. Reviews of underwater drag reduction technology[J]. Advances in Mechanics,2009,39(5): 546-554.
[2] 胡海豹,宋保维,黄桥高,等. 水下湍流减阻途径分析[J]. 摩擦学学报,2010,30(6): 620-629. Hu H B,Song B W,Huang Q G,et al. Analysis about the approaches of underwater turbulence drag reduction[J]. Tribology,2010,10(6): 620-629.
[3] Ou J,Perot B,Rothstein J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids (1994-present),2004,16(12): 4 635-4 643.
[4] Min T,Yoo J Y,Choi H,et al. Drag reduction by polymer additives in a turbulent channel flow[J]. Journal of Fluid Mechanics,2003,486: 213-238.
[5] 胡海豹,黄桥高,刘占一,等. 脊状表面减阻机理研究[J]. 摩擦学学报,2010,30(1): 32-37. Hu H B,Huang Q G,Liu Z Y,et al. Drag reduction mechanism of riblet surface[J]. Tribology,2010,30(1): 32-37.
[6] Madavan N K,Deutsch S,Merkle C L. Reduction of turbulent skin friction by microbubbles[J]. Physics of Fluids,1984,27(2): 356-363.
[7] Choi K S,Yang X,Clayton B R,et al. Turbulent drag reduction using compliant surface[J]. In: Proceedings of the Royal Society,1997,453: 2 229-2 240.
[8] 蒋雄,乔生儒,张程煜,等. 疏水表面及其减阻研究[J]. 化学进展,2008,20(4): 450-456. Jiang X,Qiao S R,Zhang C Y,et al. Hydrophobic surface and its application to drag reduction[J]. Progress in Chemistry,2008,20(4): 450-456.
[9] 王新亮,狄勤丰,张任良,等. 超疏水表面滑移理论及其减阻应用研究进展[J]. 力学进展,2010,40(3): 241-249. Wang X L,Di Q F,Zhang R L,et al. Progress in theories of super-hydrophobic surface slip effect and its application to drag reduction technology[J]. Advances in Mechanics,2010,40(3): 241-249.
[10] 宋保维,郭云鹤,罗壮竹,等. 疏水表面减阻环带实验研究[J]. 物理学报,2013,62(15): 154 701(1)-154 701(7). Song B W,Guo Y H,Luo Z Z,et al. Investigation about drag reduction annulus experiment of hydrophobic surface[J]. Acta Physica Sinica,2013,62(15): 154 701(1)-154 701(7) .
[11] Wu Y,Xue Y H,Pei X W,et al. Adhesion-regulated switchable fluid slippage on superhydrophobic surfaces[J]. Journal of Physical Chemistry C,2014,118(5): 2 564-2 569.
[12] Wu Y,Cai M R,Li Z Q,et al. Slip flow of diverse liquids on robust superomniphobic surfaces[J]. Journal of Colloid and Interface Science,2014,414:9-13.
[13] Zhou M,Li J,Wu C X,et al. Fluid drag reduction on superhydrophobic surfaces coated with carbon nanotube forests (CNTs) [J]. Soft Matter,2011,7(9): 4 391-4 396.
[14] Zhu Y and Granick S. Rate-dependent slip of newtonian liquid at smooth surfaces[J]. Physical Review Letters,2001,87(9): 096105(1)-096105(4).
[15] Honig C D F and Ducker W A. No-slip hydrodynamic boundary condition for hydrophilic particles[J]. Physical Review Letters,2007,98(2): 028 305(1)-028 305(4).
[16] Tretheway D C and Meinhart C D. Apparent fluid slip at hydrophobic microchannel walls[J]. Physics of Fluids (1994-present),2002,14(3): L9-L12.
[17] Barrat J L and Bocquet L. Large slip effect at a nonwetting fluid-solid interface[J]. Physical Review Letters,1999,82(23): 4 671.
[18] Voronov R S and Papavassiliou D V. Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle [J]. Industrial & Engineering Chemistry Research,2008,47(8): 2 455-2 477.
[19] Huang D M,Sendner C,Horinek D,et al. Water slippage versus contact angle: a quasiuniversal relationship[J]. Physical Review Letters,2008,101(22): 226 101.
[20] Gesser H D,Lafreniere D R T. A drag-reducing water insoluble hydrophilic marine coating[J]. Progress in Organic Coatings,2004,49(4): 372-374.
[21] Bhushan B,Wang Y,Maali A. Boundary slip study on hydrophilic,hydrophobic,and superhydrophobic surfaces with dynamic atomic force microscopy[J]. Langmuir,2009,25(14): 8 117-8 121.
[22] Ho T A,Papavassiliou D V,Lee L L,et al. Liquid water can slip on a hydrophilic surface[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(39): 16 170-16 175.
[23] Wang X L,Ye Q A,Liu J X,et al. Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups[J]. Journal of Colloid and Interface Science,2010,351(1): 261-266.
[24] Wu W C,Wang X L,Wang D A,et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids[J]. Chemical Communications,2009:1 043-1 045.
[25] 窦华书,Khoo B C. 压力驱动剪切流动中湍流转捩的准则[C]//樊菁. 第七届全国流体力学学术会议论文摘要集. 桂林:中国力学学会,2012. Dou H S,Khoo B C. Criterion of turbulent transition in pressure driven flows[C]//Fan J. The 7th National Conference on Fluid Mechanics Abstract Set. Gui Lin: The Chinese Society of Theoretical and Applied Mechanics,2012 .
[26] Chakraborty S. Microfluidics and microfabrication[M]. New York: Springer Science+Business Media,2010.
[27] 于广锋,刘宏伟. 基于滑移理论的超疏水表面减阻性能分析[J]. 摩擦学学报,2013,33(2): 191-195. Yu G F,Liu H W. Analysis on drag reduction of super-hydrophobic surface based on slip theory[J]. Tribology,2013,33(2): 191-195.
[28] Guo R S and Zhou F. Superhydrophobic surfaces for drag reduction[M]//Wang J and Chung Y W. Encyclopedia of Tribology. New York: Springer US,2013: 3 380-3 387.
[29] 黄桥高,潘光,武昊,等. 超疏水表面减阻水洞实验及减阻机理研究[J]. 实验流体力学,2011,25(5): 21-25. Huang Q G,Pan G,Wu H,et al. Investgation about drag reduction water tunnel experiment and mechanism of superhydrophobic surface[J]. Journal of Experiments in Fluid Mechanics,2011,25(5): 21-25.
[30] Bainbridge I F,Taylor J A. The surface tension of pure aluminum and aluminum alloys[J]. Metallurgical and Materials Transactions A,2013,44(8): 3 901-3 909.
-
期刊类型引用(12)
1. 包海默,安轩昂,宋梅萍,胡晓惠. 水下机器人减阻设计研究进展. 机械设计. 2025(03): 163-172 . 百度学术
2. 顾玮铭,丁豪,张芳芳. 金属材料涂层表面润湿性能的测定. 中国药品标准. 2024(06): 567-570 . 百度学术
3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 . 百度学术
4. 周通,陈晶晶,涂春朝,吉晓燕,陆小华,王昌松. 管道内多巴胺超疏水涂层的制备. 化工学报. 2021(07): 3814-3822 . 百度学术
5. 张春来,王潇,吴银涛,王波. 超疏水表面水下减阻技术研究进展. 功能材料与器件学报. 2021(05): 445-455 . 百度学术
6. 刘洋,欧阳清,栾红伟. 沉积熔融法制备超疏水微结构表面. 中国材料进展. 2020(01): 59-63 . 百度学术
7. 矫捷,吕宇玲,朱正南,牛振宇. 管道表面特性对流动摩阻系数的影响研究进展. 石油化工高等学校学报. 2019(06): 77-83 . 百度学术
8. 蒋华义,张亦翔,梁爱国,齐红媛. 材料表面润湿性的影响因素及预测模型. 表面技术. 2018(01): 60-65 . 百度学术
9. 赵霞,李亚斌,李响,胡涛,张航. 超疏水材料的制备及其去除水中污染物性能的研究进展. 化工环保. 2018(01): 13-18 . 百度学术
10. 李小磊,马晓雯,常允乐,张会臣. 表面润湿性对微通道界面减阻特性的影响. 表面技术. 2017(06): 42-48 . 百度学术
11. 周峰,吴杨. “润滑”之新解. 摩擦学学报. 2016(01): 132-136 . 本站查看
12. 李小磊,张会臣. 超疏水表面减阻特性的研究进展. 润滑与密封. 2016(10): 116-122 . 百度学术
其他类型引用(22)
计量
- 文章访问数: 2488
- HTML全文浏览量: 14
- PDF下载量: 1643
- 被引次数: 34