-
摘要:
为高效研究齿轮油及添加剂对齿面微点蚀影响规律,降低研究初期抗微点蚀齿轮油开发的成本,采用四球试验机、往复摩擦试验机(SRV)及滑滚摩擦试验机(MPR)考察了PAO基础油、由市售高性能复合剂调和的齿轮油以及由通用齿轮油复合剂调和的齿轮油的摩擦学行为与抗微点蚀性能的对应性,并分析MPR试验后辊子表面3种齿轮油对微点蚀造成的影响. 试验结果表明:四球机法未能凸显不同添加剂之间的微点蚀差异,SRV试验机在低频重载条件下的摩擦测试结果与3种齿轮油的实际应用中抗微点蚀性能保持一致. 此外,MPR滑滚摩擦试验结合辊子表面形貌及元素分析能够有效地区分不同齿轮油的抗微点蚀性能,其中基础油由于较差的润滑,对摩擦副表面起到机械抛光作用使微点蚀面积仅为1.36%,高性能复合剂的添加导致了1.45%的微点蚀面积,优于通用复合剂作用下4.67%的结果,这是由于表面形成了含硼化合物保护膜. 对此本文中提出了采用SRV初步评价与MPR相结合的经济高效抗微点蚀性能评价手段.
Abstract:In order to efficiently evaluate the influence of gear oil and additives on micropitting, and minimize the cost associated with early-stage development of anti-micropitting gear oil, a four-ball testing machine, reciprocating friction testing machine (SRV), and sliding and rolling friction testing machine (MPR) were employed. These instruments enabled an examination of the performance of gear oil in terms of its frictional behavior and anti-micropitting capabilities when compared to PAO, PAO with commercially available anti-micropitting additive packages, and PAO with universal additive packages. The effects of these three types of gear oils on micropitting were analyzed post MPR testing. Experimental results indicated that the four-ball machine method did not effectively distinguish the differences in micropitting among the three lubricants. However, the friction test results from the SRV under low-frequency and heavy-load conditions aligned with the anti-micropitting performance of the three types of gear oils in real-world applications, making it beneficial for the efficient evaluation of the tribological properties of additives. Moreover, the MPR sliding-rolling friction test could more accurately simulate the state of micropitting under sliding rolling contact fatigue. By employing a metallographic microscope, SEM, and a 3D profilometer to analyze the friction morphology of the roller surface, it was concluded that the poor lubrication of the base oil had a mechanical polishing effect on the friction pair surface, which suppressed the propagation of cracks and reduced the micropitting area to a mere 1.36%. The inclusion of high-performance composite agents (Gear oil-1) resulted in a micropitting area of 1.45%, which was superior to the 4.67% observed under the action of general composite agents (Gear oil-2). In conjunction with the elemental analysis of additives using ICP and the roller surface using XPS, the combined effect of the boron-containing compound protective film on the friction surface and the sulfur/phosphorus additive was crucial in preventing micro-pitting. As a result, we proposed an efficient and cost-effective method for evaluating micropitting resistance performance, integrating SRV preliminary evaluation with MPR.
-
Keywords:
- gear oil /
- micropitting /
- tribological performance
-
风力发电是现代可再生能源技术的重要组成部分,其主要部件的可靠性问题一直是业界关注的焦点,特别是风电齿轮箱中的微点蚀问题已经引起了足够的重视[1-2]. 微点蚀作为1种赫兹接触疲劳现象,表现为局部表面损伤,通常发生在风力涡轮机的齿轮及轴承中. 这种损伤若不加以控制,会改变接触表面几何形状,增加内部间隙,导致转动精度下降及噪声污染,更有甚者造成宏观点蚀和轴承失效,运维成本剧增[3-6]. 美国国家可再生能源实验室(NREL)已经启动了变速箱可靠性研究项目,微点蚀作为重点关注问题进行了探讨[7]. 研究者从多角度如齿轮的设计、表面粗糙度[8]、金属材质[9]、硬度及热处理技术[10]、工作条件[11]及其油膜厚度等探讨微点蚀的成因、发展过程及预防措施. 例如Oila等[12]率先通过双盘试验机考察材料、表面层、载荷、润滑剂、温度、速度和滑辊比7个因素对微点蚀的影响,对后续研究者对微点蚀的研究具有重要借鉴意义. Britton等[13]通过设计正交试验,研究了压力、滑滚比和速度对微点蚀的作用,其中压力是最主要因素,滑滚比对裂纹扩展影响最大且发现了交互作用. Liu等[14]系统归纳总结了齿轮接触疲劳理论研究进展,对进一步理解微点蚀失效机理及耐微点蚀齿轮设计制造具有重要参考价值. 与此同时,润滑油配方及一些新型抗微点蚀添加剂技术的发展也为解决这一问题提供了新的思路. Ochoa等[15]考察了极压剂、抗磨剂和减摩剂对微点蚀的影响,反应活性过高的添加剂甚至恶化磨损表面;张继平等[16-18]研究了含磷系添加剂分子结构对微点蚀的作用,发现化学活性适中的分散型磷酸酯铵盐有利于减少微点蚀,为抗微点蚀润滑油品添加剂的选择提供了参考. 张亚江等[19]通过改性具有层状结构及较低硬度的纳米LaF3作为抗微点蚀及自修复型添加剂,并研究了其摩擦学与抗微点蚀行为的关联性,为抗微点蚀纳米材料的开发提供研究依据. Qu等[20-22]合成了1种膦基磷酸盐离子液体,与低黏度基础油结合使用时,能够在滚动接触疲劳过程中在金属表面形成更坚固、更均匀及更光滑的摩擦膜,从而减少磨损和防止微点蚀的形成,为滚动接触摩擦方式下抗微点蚀添加剂的设计开发提供新的研究思路.
如何选用高性能润滑油及先进添加剂技术将成为未来理想解决微点蚀问题的关键,这离不开高效的性能评价技术. 目前被行业广泛认可且形成标准的方法为FVA54/7[23],存在试验周期长及成本高的缺点,无法满足研发初期针对抗微点蚀的润滑材料进行快速高效的初步筛选,迫切需要建立高效低成本的微点蚀性能评价方法[24-25]. 本文中基于多种用于评价润滑油摩擦学性能的试验装置,对市售通用型及抗微点蚀齿轮油复合剂的进行摩擦学性能评价,模拟分析不同试验装置对微点蚀性能评价的对应性,为抗微点蚀润滑油设计开发提供技术支持.
1. 试验部分
1.1 试验仪器
试验中采用3种不同运动方式的试验仪器对润滑油微点蚀性能进行评价. 其中四球试验机是用于评价润滑油抗磨损性能和承载能力的成熟设备;往复摩擦试验机(SRV)可用于高频往复条件下微动摩擦磨损的测量且精度高;滑滚摩擦试验机(MPR)通过三点接触滑滚运动方式,降低疲劳试验周期. 试验仪器的相关信息列于表1中.
表 1 试验仪器信息Table 1. Experimental tester informationTribometer Four-ball SRV®5 MPR Appearance Equipment brand Tenkey, China Optimol, Germany PCS, England Frictional pairs Ball Φ12.7 mm Ball Φ10 mm Roller 680 HV Ball/disc 61 HRC~65 HRC Ring 780 HV Note:the images are sourced from the official website 1.2 试验样品
以美孚聚α烯烃(PAO)为基础油体系,由质量分数分别为43% PAO8和57% PAO40调和而成,命名为Base oil. 基础油中添加质量分数为2%的雅富顿高性能齿轮油复合剂HiTEC® 307,能够满足标准FVA54/7的要求,作为抗微点蚀齿轮油Gear oil-1. 基础油中添加质量分数为2%的雅富顿通用重负荷齿轮油复合剂HiTEC® 3339作为重负荷齿轮油Gear oil-2. 试验中对基础油以及2种复合配方润滑油这3种润滑油样品进行了基本理化性质的测试.
1.3 四球机试验
采用四球试验机根据GB/T3142-2019规定的试验方法测试3种齿轮油的最大无卡咬负荷(PB值)和烧结负荷(PD值). 根据SH/T0189试验方法,分别设定试验条件1:转速1 800 r/min、载荷196 N、温度54 ℃、时间1 h;试验条件2:转速1 200 r/min、载荷392 N、温度75 ℃、时间1 h,并进行了磨斑直径及摩擦系数的测试.
1.4 往复摩擦试验
采用Optimal SRV5微动摩擦磨损试验机球盘往复模式,分别进行了负荷级及耐久级试验,其中耐久级试验分别考察了频率及载荷因素的影响,试验条件列于表2中. 采用KLA-Tencor非接触式三维表面轮廓仪读取试验后钢盘磨损体积及检测三维形貌.
表 2 SRV5试验条件Table 2. Experimental conditions for SRV5Test conditions Temperature/℃ Load Frequency/Hz Amplitude/mm Duration/min Load stage 60 100 N/2 min 25 2 - Endurance stage Differ-frequency 60 200 N 5, 25 or 50 2 30 Differ-load 60 100, 200 or 300 N 5 2 30 1.5 滑滚摩擦试验
利用PCS微点蚀试验机(MPR)测试润滑油滑滚疲劳试验,试验条件为升温磨合阶段:温度为25~60 ℃,载荷为50 N,速度为1 m/s,滑滚比设为0;疲劳循环阶段:温度为60 ℃,载荷为150 N,速度为2 m/s,滑滚比为5%,时间为2 h×3次. 试验结束后得到相应中心线振动偏移曲线(CLA),采用Olympus金相显微镜观察辊子表面微点蚀形貌. 为了确保评价的准确度,随机选取辊子表面的9个点组合成新的微点蚀图像,使用Image J软件将图像转换为二进制格式,测量黑色区域百分比记为微点蚀面积. 采用扫描电子显微镜(SEM)观察辊子表面微观形貌,采用KLA-Tencor非接触式三维表面轮廓仪读取辊子表面微点蚀坑三维形貌照片及粗糙度曲线. 采用X射线光电子能谱(XPS)分析辊子表面元素构成.
2. 结果与讨论
2.1 齿轮油基本理化性质
对Base oil、Gear oil-1和Gear oil-2这3种油品的黏度、铜片腐蚀一级元素质量分数等基本理化性质进行测试分析,具体指标列于表3中. 3种油品的黏度基本保持一致,可以忽略油品黏度对润滑性能造成的影响. 作为抗微点蚀齿轮油,Gear oil-1相比于Gear oil-2,硫元素质量分数降低,磷和硼元素的质量分数提升. 从铜片腐蚀结果说明,Gear oil-1和Gear oil-2齿轮油中硫元素的存在没有导致铜的异常腐蚀.
表 3 齿轮油基本理化指标Table 3. Basic physicochemical indicators of gear oilParameters Base Oil Gear Oil-1 Gear Oil-2 Test method Viscosity (40℃)/(mm2/s) 153.3 152.9 152.6 GB/T 265 Copper corrosion grade (100 ℃, 3 h) 1a 1a 1a GB/T 5096 Element content/parts per million (ppm) S <1 3 361 4 598 GB/T 17476 P <1 368 269 B <1 59 <1 2.2 四球试验结果
通过四球机对3种齿轮油的摩擦学性能评价结果列于表4中. 相比PAO基础油,添加2种齿轮油复合剂后,齿轮油的最大无卡咬负荷和烧结负荷具有较大幅度的性能提升,然而Gear oil-1与Gear oil-2两者之间的极压性能差异未有明显区分. 研究高速和重载2种试验条件下的四球摩擦行为,对比磨斑直径测试结果,相比Base oil,Gear oil-1和Gear oil-2的抗磨性能提升明显,且Gear oil-2的磨斑直径更小;对比摩擦系数,高速轻载条件下,相比Base oil,Gear oil-1摩擦系数减小,Gear oil-2的摩擦系数反而增大,低速重载下,Gear oil-1和Gear oil-2的摩擦系数都有所减小,Gear oil-2的摩擦系数最小. 从以上测试结果来看,添加复合剂的齿轮油均满足GB 5903-2011对L-CKD工业闭式齿轮油及GBT 33540.3-2017对风电机组变速箱齿轮油的四球抗磨性能指标要求,但与其他普通齿轮油相比,Gear oil-1的抗微点蚀性能尚不能通过四球试验凸显出来.
表 4 四球机试验测试结果Table 4. Test results of four ball machineParameters Base oil Gear oil-1 Gear oil-2 PB/N 755 1570 1500 PD/N 1236 2453 2453 Average friction coefficient Condition 1 0.084 0.079 0.090 Condition 2 0.082 0.076 0.058 Wear scar diameter/mm Condition 1 0.716 0.321 0.302 Condition 2 0.785 0.337 0.318 2.3 往复摩擦试验结果
3种齿轮油的往复极压性能测试摩擦系数曲线如图1所示. 由图1中可知,Base oil的极压性能较差,100 N即出现卡咬现象. Gear oil-2在200 N时摩擦系数因超出设定上限而造成摩擦试验停止,有限地提升了基础油的极压性能. Gear oil-1表现出良好的极压性能,在400 N时摩擦系数剧增. 相比四球机试验法,采用往复式摩擦试验方法能够有效区分2种齿轮油的抗极压性能表现.
继续研究了不同频率下Base oil、Gear oil-1和Gear oil-2的摩擦学性能,试验后的磨损体积及摩擦系数曲线如图2所示. 由图2可知,任何频率条件下Gear oil-1和Gear oil-2的摩擦系数及磨损体积均低于基础油Base oil. 在低频5 Hz条件下,Gear oil-1表现出比Gear oil-2更优越的摩擦学性能,与实际应用的性能表现具有一致性. 随着频率增加到25 Hz,Gear oil-1的摩擦系数在600 s左右超过了Gear oil-2,且持续到试验结束,磨损体积也大于Gear oil-2. 随频率进一步增加到50 Hz,Gear oil-1的摩擦系数及磨损体积均高于Gear oil-2.
因在低频条件下往复式摩擦试验对齿轮油的实际性能表现具有显著区分性,在此进一步考察了低频条件下载荷对3种齿轮油性能的影响,磨损体积与摩擦系数曲线如图3所示. 在不同载荷试验条件下,Gear oil-1和Gear oil-2的摩擦系数及磨损体积显著低于Base oil,尤其在200 N或者300 N的重载条件下,Gear oil-1不仅具有最小的摩擦系数,同时具有最小的磨损量. 由此可知,Gear oil-1在“低频重载”条件下具有更加优越的抗磨减摩性能表现,可有效降低低频重载工作条件下摩擦副的磨损,这与之前四球试验结果迥然不同.
2.4 滑滚摩擦试验结果
通过MPR试验机研究了给定条件下3种齿轮油抗微点蚀性能,图4所示为测试后所得的CLA曲线. 由图4可知,Base oil的CLA曲线较高,表示了辊子运动过程中相对中心轴具有较大的振动幅度,这是由于没有添加剂的润滑作用导致辊子表面磨损及振动严重. 通常微点蚀的严重后果会导致摩擦副剧烈振动,Gear oil-1具有最低的CLA值,说明振动幅度最小,因此相比Gear oil-2具有更好的抗微点蚀作用.
图5所示为测试结束后辊子表面的光学显微镜照片、软件处理后计算微点蚀面积的图片以及局部放大的扫描电镜照片,且计算得Base oil、Gear oil-1和Gear oil-2润滑作用下辊子微点蚀面积分别为1.36%、1.45%和4.67%. 由形貌的显微照片及微点蚀面积可知,Base oil润滑的辊子表面颜色变蓝,这是由于润滑不良导致辊子表面磨损严重,进而将表面的微点蚀小坑通过磨损抛光去除,因而具有较低的微点蚀面积. Gear oil-1润滑下的辊子表面光滑平整,且微点蚀坑分布较少且较浅,说明Gear oil-1具有良好的抗微点蚀作用. 而Gear oil-2作用下的辊子表面微点蚀坑分布密集且沟槽较深,微点蚀面积远大于Base oil和Gear oil-1,这与2种复合添加剂的实际性能表现具有显著对应性. 同时图6所示为3种润滑剂作用下辊子表面的三维形貌照片和粗糙度曲线,进一步表明了基础油对摩擦副表面造成了严重磨损,平均磨损深度在1~2 μm之间,而磨损对微点蚀裂纹起到机械抛光作用,消除了微点蚀的逐步扩展. Gear oil-2比Gear oil-1具有更多的微点蚀凹坑及高磨损量,其中Gear oil-2作用下辊子局部区域的三维垂直扫描深度达到3 μm,平均磨损深度在1 μm以内,而Gear oil-1起到良好的抗微点蚀作用,辊子平均磨损深度小于0.5 μm. 以上结果说明,通过MPR试验机分析辊子表面微点蚀形貌及产生的规律能够作为评价油品及添加剂抗微点蚀性能的有效方法.
图 5 MPR试验后(a, a1, a2) Base oil、(b, b1, b2) Gear oil-1和(c, c1, c2) Gear oil-2对应的辊子表面光学显微镜照片、微点蚀软件处理图片及扫描电镜照片Figure 5. Optical micrographs , micropitting software processed images and SEM micrographs of roller surfaces corresponding to (a, a1,a2) Base oil, (b, b1,b2) Gear oil-1 and (c, c1,c2) Gear oil-2 after MPR testing为了进一步理解潜在润滑机制,用XPS光谱分析摩擦试验后辊子表面的化学结构变化结果,如图7所示. 结合531.3~531.8 eV和532.7 eV的O 1s的峰值,以及谱中位于723.6~724.7 eV和709.9~711.4 eV的Fe 2p 峰,确定可测定出铁氧化物,具体为Fe2O3、Fe3O4和FeO,此外,711.7 eV的峰值归因于Fe(OH)O,在N 1s光谱中的399.8 eV处的峰值表明表面含氮化合物,而基础油作用下辊子表面并未发现氮化物的峰. 同时,基础油润滑下的辊子表面并未检测出硫、磷和硼等活性元素所对应的峰值,而B 1s谱中位于190.3 eV处的峰位对应含硼化合物,结合ICP元素分析结果,表明Gear oil-1相比Gear oil-2具有更好的抗微点蚀性能,可能是在辊子表面形成了含硼化合物保护膜,同时硫磷添加剂提供了极压及润滑保护作用.
2.5 评价技术对比与讨论
对比四球试验机、SRV试验机及MPR试验机3种不同磨损形式下的磨损表面形貌特点及摩擦系数,结果如图8所示. Gear oil-1和Gear oil-2齿轮油的四球磨斑均表现出不规则的圆形及较深的磨损沟槽,Base oil则由于严重磨损产生较大且规则的圆形磨斑,3种齿轮油所对应的SRV磨痕表现出深浅不一致的凹槽,更多的是体现了不同添加剂的抗磨损性能的差异. 而经过MPR滑滚摩擦测试后的辊子表面则表现出区分度明显的微点蚀坑,且Gear oil-1和Gear oil-2体现出的性能差异与产品性能设计具有高度对应性,Gear oil-1的微点蚀坑最少,可能是由于含硼添加剂的使用在辊子表面形成的保护膜抑制了微点蚀裂纹的发生,而Gear oil-2本身含有较高含量的活性硫,形成了最明显的微点蚀现象. 同时,由于运动方式的不同,滑滚摩擦方式的摩擦系数相比四球及SRV试验机而言较小,3种油品摩擦系数的差异性并不明显,SRV往复摩擦对于评价油品摩擦系数及磨损量表现出更好的区分度.
图 8 Base oil、Gear oil-1和Gear oil-2的(a, b, c)四球磨斑照片及(d)摩擦系数;SRV试验后磨痕的(a1, b1, c1)三维形貌照片及(d1)摩擦系数;MPR试验后辊子的(a2, b2, c2)摩擦形貌的SEM照片及(d2)摩擦系数Figure 8. (a, b, c) Four ball wear pattern micrographs and (d) friction coefficient, (a1, b1, c1) three-dimensional morphology micrographs of wear marks (d1) and friction coefficient after SRV test, (a2, b2, c2) SEM micrographs of roller and (d2) friction coefficient after MPR test of Base oil, Gear oil-1 and Gear oil-23. 结论
本文中通过设定载荷和频率等因素条件,对比评价了3种不同摩擦方式下的不同齿轮油的摩擦学性能表现及对微点蚀性能的影响,探讨了适用于齿轮油抗微点蚀性能的经济高效的评价方式,对指导抗微点蚀齿轮油产品设计及开发具有重要意义.
a. 四球试验方法评估齿轮油的极压性,满足国标或行业标准的要求,在对于抗微点蚀齿轮油极压性的评价上SRV则表现出更明显的区分度. 此外,四球和SRV试验针对3种齿轮油在高低速条件下的摩擦系数和磨损体积等摩擦行为的评价结果截然不同.
b. 相较四球和SRV试验而言,MPR结合了摩擦系数、振动幅度及磨损表面微点蚀状况分析,能更有效地区分和评价齿轮油的抗微点蚀性能,且得到Base oil、Gear oil-1和Gear oil-2这3种油品的抗微点蚀面积分别为1.36%、1.45%和4.67%.
c. 采用低频5 Hz条件下SRV试验的初步评价,结合特定参数下MPR试验结果,与实际应用表现具有高度对应性,可作为风电齿轮油的抗微点蚀性能经济高效的评价手段.
d. 基础油由于较差的润滑且对摩擦副表面起到机械抛光作用,减少了微点蚀的扩展,高性能复合剂相比通用复合剂表现出了更优异的微点蚀抑制作用,这是由于表面形成了含硼化合物保护膜,同时与硫磷添加剂协同作用的结果.
-
图 5 MPR试验后(a, a1, a2) Base oil、(b, b1, b2) Gear oil-1和(c, c1, c2) Gear oil-2对应的辊子表面光学显微镜照片、微点蚀软件处理图片及扫描电镜照片
Figure 5. Optical micrographs , micropitting software processed images and SEM micrographs of roller surfaces corresponding to (a, a1,a2) Base oil, (b, b1,b2) Gear oil-1 and (c, c1,c2) Gear oil-2 after MPR testing
图 8 Base oil、Gear oil-1和Gear oil-2的(a, b, c)四球磨斑照片及(d)摩擦系数;SRV试验后磨痕的(a1, b1, c1)三维形貌照片及(d1)摩擦系数;MPR试验后辊子的(a2, b2, c2)摩擦形貌的SEM照片及(d2)摩擦系数
Figure 8. (a, b, c) Four ball wear pattern micrographs and (d) friction coefficient, (a1, b1, c1) three-dimensional morphology micrographs of wear marks (d1) and friction coefficient after SRV test, (a2, b2, c2) SEM micrographs of roller and (d2) friction coefficient after MPR test of Base oil, Gear oil-1 and Gear oil-2
表 1 试验仪器信息
Table 1 Experimental tester information
Tribometer Four-ball SRV®5 MPR Appearance Equipment brand Tenkey, China Optimol, Germany PCS, England Frictional pairs Ball Φ12.7 mm Ball Φ10 mm Roller 680 HV Ball/disc 61 HRC~65 HRC Ring 780 HV Note:the images are sourced from the official website 表 2 SRV5试验条件
Table 2 Experimental conditions for SRV5
Test conditions Temperature/℃ Load Frequency/Hz Amplitude/mm Duration/min Load stage 60 100 N/2 min 25 2 - Endurance stage Differ-frequency 60 200 N 5, 25 or 50 2 30 Differ-load 60 100, 200 or 300 N 5 2 30 表 3 齿轮油基本理化指标
Table 3 Basic physicochemical indicators of gear oil
Parameters Base Oil Gear Oil-1 Gear Oil-2 Test method Viscosity (40℃)/(mm2/s) 153.3 152.9 152.6 GB/T 265 Copper corrosion grade (100 ℃, 3 h) 1a 1a 1a GB/T 5096 Element content/parts per million (ppm) S <1 3 361 4 598 GB/T 17476 P <1 368 269 B <1 59 <1 表 4 四球机试验测试结果
Table 4 Test results of four ball machine
Parameters Base oil Gear oil-1 Gear oil-2 PB/N 755 1570 1500 PD/N 1236 2453 2453 Average friction coefficient Condition 1 0.084 0.079 0.090 Condition 2 0.082 0.076 0.058 Wear scar diameter/mm Condition 1 0.716 0.321 0.302 Condition 2 0.785 0.337 0.318 -
[1] Clarke A, Evans H P, Snidle R W. Understanding micropitting in gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(7–8): 1276–1289. doi: 10.1177/0954406215606934.
[2] 陈玲, 魏沛堂, 刘怀举, 等. 齿轮接触疲劳微观结构作用研究综述[J]. 机械传动, 2022, 46(1): 1–18]. doi: 10.16578/j.issn.1004.2539.2022.01.001. Chen Ling, Wei Peitang, Liu Huaiju, et al. Review on the effect of microstructure on gear contact fatigue[J]. Journal of Mechanical Transmission, 2022, 46(1): 1–18 doi: 10.16578/j.issn.1004.2539.2022.01.001
[3] Ueda M, Wainwright B, Spikes H, et al. The effect of friction on micropitting[J]. Wear, 2022, 488: 204130. doi: 10.1016/j.wear.2021.204130.
[4] Kotzalas M N, Doll G L. Tribological advancements for reliable wind turbine performance[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1929): 4829–4850. doi: 10.1098/rsta.2010.0194.
[5] Peng Han, Zhang Hai, Shangguan Linjian, et al. Review of tribological failure analysis and lubrication technology research of wind power bearings[J]. Polymers, 2022, 14(15): 3041. doi: 10.3390/polym14153041.
[6] Mallipeddi D, Norell M, Subbaramaiah Naidu V M, et al. Micropitting and microstructural evolution during gear testing-from initial cycles to failure[J]. Tribology International, 2021, 156: 106820. doi: 10.1016/j.triboint.2020.106820.
[7] Sheng S. Wind turbine micropitting workshop: a recap[R]. Technical Report, Golden: NREL, 2010. doi: 10.2172/972512.
[8] Li Wei, Lu Liantao. The influence of surface roughness and viscosity on micropitting damage[J]. Industrial Lubrication and Tribology, 2021, 73(3): 531–535. doi: 10.1108/ilt-10-2020-0384.
[9] 李林龙, 吴彼, 薛伟海, 等. 稀土对GCr15轴承钢滚动接触疲劳中微点蚀的影响[J]. 摩擦学学报, 2023, 43(9): 995–1005]. doi: 10.16078/j.tribology.2022155. Li Linlong, Wu Bi, Xue Weihai, et al. Effect of rare earth on the micro-pitting behavior in rolling contact fatigue of GCr15 bearing steel[J]. Tribology, 2023, 43(9): 995–1005 doi: 10.16078/j.tribology.2022155
[10] Li Wei. Effect of interface factors on micro-pitting corrosion damage of micro-particle shot peening carburized steel[D]. Chengdu: Southwest Jiaotong University, 2021. doi:10.27414/d.cnki.gxnju.2021.003236(in Chinese). [李伟. 界面因素对微粒子喷丸渗碳钢微点蚀损伤的影响[D]. 成都: 西南交通大学, 2021]. Li Wei. Effect of interface factors on micro-pitting corrosion damage of micro-particle shot peening carburized steel[D]. Chengdu: Southwest Jiaotong University, 2021. doi:10.27414/d.cnki.gxnju.2021.003236(in Chinese).
[11] 李帅, 郭峰, 王晓波, 等. 油润滑滚滑接触条件下轴承钢微点蚀的试验观察[J/OL]. 摩擦学学报(中英文), 1–18[2025-01-03]. https://doi.org/10.16078/j.tribology.2023284]. Li Shuai, Guo Feng, Wang Xiaobo, et al. An experimental study of micropitting of bearing steel under oil lubricated rolling/sliding conditions[J/OL]. Tribology, 1–18[2025-01-03]
[12] Oila A, Bull S J. Assessment of the factors influencing micropitting in rolling/sliding contacts[J]. Wear, 2005, 258(10): 1510–1524. doi: 10.1016/j.wear.2004.10.012.
[13] Britton W M, Clarke A, Evans H P. A Novel Method for automatic detection of incipient micropitting in ground surfaces[J]. Tribology International, 2021, 159: 106959. doi: 10.1016/j.triboint.2021.106959.
[14] Liu Huaiju, Liu Heli, Zhu Caichao, et al. A review on micropitting studies of steel gears[J]. Coatings, 2019, 9(1): 42. doi: 10.3390/coatings9010042.
[15] Ochoa E D, Otero J E, Tanarro E C, et al. Analysis of the effect of different types of additives added to a low viscosity polyalphaolefin base on micropitting[J]. Wear, 2015, 322: 238–250. doi: 10.1016/j.wear.2014.11.014.
[16] 张继平, 王鹏, 郝利峰, 等. 含磷极压抗磨剂抗微点蚀性能评价和机理分析[J]. 表面技术, 2020, 49(9): 45–52]. doi: 10.16490/j.cnki.issn.1001-3660.2020.09.004. Zhang Jiping, Wang Peng, Hao Lifeng, et al. The study of the anti-micro-pitting performance of the EP & AW additives[J]. Surface Technology, 2020, 49(9): 45–52 doi: 10.16490/j.cnki.issn.1001-3660.2020.09.004
[17] 张继平, 孙喆, 淮文娟, 等. 齿轮油和极压抗磨剂对齿轮抗微点蚀性能的影响[J]. 石油商技, 2018, 36(3): 16–22]. doi: 10.3969/j.issn.1006-1479.2018.03.003. Zhang Jiping, Sun Zhe, Huai Wenjuan, et al. Effect of gear oil and extreme pressure antiwear agent on micro-pitting corrosion resistance of gears[J]. Petroleum Products Application Research, 2018, 36(3): 16–22 doi: 10.3969/j.issn.1006-1479.2018.03.003
[18] 周康, 李旭, 蒲宸光, 等. 含磷抗磨剂对工业齿轮油抗微点蚀性能的影响[J]. 石油炼制与化工, 2020, 51(1): 49–54]. doi: CNKI:SUN:SYLH.0.2020-01-016. Zhou Kang, Li Xu, Pu Chenguang, et al. Effect of phosphorous-containing anti-wear agent on micro pitting resistance of industrial gear oil[J]. Petroleum Processing and Petrochemicals, 2020, 51(1): 49–54 doi: CNKI:SUN:SYLH.0.2020-01-016
[19] 张亚江, 范淑光, 张玉娟, 等. 油溶性纳米LaF3的抗微点蚀性能研究[J/OL]. 摩擦学学报(中英文), 1-20[2025-01-03]. https://doi.org/10.16078/j.tribology.2024039]. Zhang Yajiang, Fan Shuguang, Zhang Yujuan, et al. Micropitting resistance of oil-soluble nano-LaF3 in gear oil[J/OL]. Tribology, 1-20[2025-01-03]
[20] Stump B C, Zhou Yan, Luo Huimin, et al. New functionality of ionic liquids as lubricant additives: mitigating rolling contact fatigue[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30484–30492. doi: 10.1021/acsami.9b10001.
[21] Roy S, Speed L, Viola M, et al. Oil miscible phosphonium-phosphate ionic liquid as novel antiwear and antipitting additive for low-viscosity rear axle lubricants[J]. Wear, 2021, 466: 203588. doi: 10.1016/j.wear.2020.203588.
[22] Roy S, Stump B C, Luo Huimin, et al. Why does a phosphonium-phosphinate ionic liquid protect the contact surfaces from wear and micropitting but increase vibration when used as an additive in rolling-sliding lubrication?[J]. Tribology International, 2021, 159: 106949. doi: 10.1016/j.triboint.2021.106949.
[23] Sagraloff N, Tobie T, Stahl K. Suitability of the test results of micropitting tests acc. to FVA 54/7 for modern practical gear applications[J]. Forschung Im Ingenieurwesen, 2022, 86(3): 471–481. doi: 10.1007/s10010-021-00508-4.
[24] 石啸. 高端工业齿轮油技术要求新变化和台架试验介绍[J]. 石油商技, 2019, 37(5): 24–33]. Shi Xiao. New changes in technical requirements of high-end industrial gear oil and introduction of bench test[J]. Petroleum Products Application Research, 2019, 37(5): 24–33
[25] 赵景鑫, 姜程, 李维民, 等. 微点蚀损伤的研究进展与展望[J]. 摩擦学学报(中英文), 2024, 44(5): 715–728]. doi: 10.16078/j.tribology.2023060. Zhao Jingxin, Jiang Cheng, Li Weimin, et al. Micro-pitting: research progress and prospects[J]. Tribology, 2024, 44(5): 715–728 doi: 10.16078/j.tribology.2023060