ISSN   1004-0595

CN  62-1224/O4

高级检索

3种粘结固体润滑涂层的摩擦学及气蚀性能研究

王伊枨, 刘昭, 侯国梁, 马俊凯, 万宏启, 吉利, 周惠娣, 陈建敏

王伊枨, 刘昭, 侯国梁, 马俊凯, 万宏启, 吉利, 周惠娣, 陈建敏. 3种粘结固体润滑涂层的摩擦学及气蚀性能研究[J]. 摩擦学学报(中英文), 2025, 45(8): 1−13. DOI: 10.16078/j.tribology.2024108
引用本文: 王伊枨, 刘昭, 侯国梁, 马俊凯, 万宏启, 吉利, 周惠娣, 陈建敏. 3种粘结固体润滑涂层的摩擦学及气蚀性能研究[J]. 摩擦学学报(中英文), 2025, 45(8): 1−13. DOI: 10.16078/j.tribology.2024108
WANG Yicheng, LIU Zhao, HOU Guoliang, MA Junkai, WAN Hongqi, JI Li, ZHOU Huidi, CHEN Jianmin. Tribological and Cavitation Erosion Resistance Properties of Three Bonded Solid Lubricating Coatings[J]. Tribology, 2025, 45(8): 1−13. DOI: 10.16078/j.tribology.2024108
Citation: WANG Yicheng, LIU Zhao, HOU Guoliang, MA Junkai, WAN Hongqi, JI Li, ZHOU Huidi, CHEN Jianmin. Tribological and Cavitation Erosion Resistance Properties of Three Bonded Solid Lubricating Coatings[J]. Tribology, 2025, 45(8): 1−13. DOI: 10.16078/j.tribology.2024108
王伊枨, 刘昭, 侯国梁, 马俊凯, 万宏启, 吉利, 周惠娣, 陈建敏. 3种粘结固体润滑涂层的摩擦学及气蚀性能研究[J]. 摩擦学学报(中英文), 2025, 45(8): 1−13. CSTR: 32261.14.j.tribology.2024108
引用本文: 王伊枨, 刘昭, 侯国梁, 马俊凯, 万宏启, 吉利, 周惠娣, 陈建敏. 3种粘结固体润滑涂层的摩擦学及气蚀性能研究[J]. 摩擦学学报(中英文), 2025, 45(8): 1−13. CSTR: 32261.14.j.tribology.2024108
WANG Yicheng, LIU Zhao, HOU Guoliang, MA Junkai, WAN Hongqi, JI Li, ZHOU Huidi, CHEN Jianmin. Tribological and Cavitation Erosion Resistance Properties of Three Bonded Solid Lubricating Coatings[J]. Tribology, 2025, 45(8): 1−13. CSTR: 32261.14.j.tribology.2024108
Citation: WANG Yicheng, LIU Zhao, HOU Guoliang, MA Junkai, WAN Hongqi, JI Li, ZHOU Huidi, CHEN Jianmin. Tribological and Cavitation Erosion Resistance Properties of Three Bonded Solid Lubricating Coatings[J]. Tribology, 2025, 45(8): 1−13. CSTR: 32261.14.j.tribology.2024108

3种粘结固体润滑涂层的摩擦学及气蚀性能研究

基金项目: 中国科学院战略性先导科技专项(XDB0470102)、中央引导地方科技发展资金项目(23ZYQA0320)、中国科学院青年创新促进会会员项目(2020416)和陇原青年英才项目资助.
详细信息
  • 中图分类号: TH117.1

Tribological and Cavitation Erosion Resistance Properties of Three Bonded Solid Lubricating Coatings

Funds: This project was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0470102) , Central Government Guides Local Science and Technology Development Fund Projects (23ZYQA0320), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020416) and Longyuan Youth Talent Project.
More Information
    Corresponding author:

    HOU Guoliang: E-mail: hgl@licp.cas.cn, Tel: +86-18394516015

  • 摘要:

    为深入研究航空燃油泵止推轴承表面用粘结固体润滑涂层在极端工况下的失效行为,采用MMW-1立式万能摩擦磨损试验机和超声振动气蚀试验机对比研究了MoS2/石墨基粘结固体润滑涂层、MoS2基粘结固体润滑涂层和石墨基粘结固体润滑涂层3种现役涂层在RP-3航空煤油中的摩擦学性能和气蚀性能;基于光学显微镜(OM)、三维光学形貌仪、扫描电子显微镜(SEM)分析了涂层原始表面以及摩擦和气蚀后表面形貌,利用高分辨X射线衍射仪(XRD)对比了摩擦前后涂层的物相组成,采用拉曼光谱仪对摩擦转移膜和涂层气蚀剥落碎屑的成分进行了表征,探讨了涂层的防护及失效机理. 结果显示:在RP-3介质中,以石墨为润滑剂的石墨基粘结固体润滑涂层摩擦系数低至0.083,磨损率为1.5×10−6 mm3/(N·m),表现出最好的摩擦学性能;3种涂层磨斑区域在摩擦前后没有出现物相变化,保持了良好的摩擦化学稳定性;对偶材料表面形成的转移膜有利于进一步降低摩擦系数. 3种涂层在煤油中的抗气蚀性能较差,表现出填料率先脱落加速涂层片状剥离的特征;因MoS2的承载能力较差且颗粒尺寸偏大,气蚀剥离程度最为严重,导致MoS2/石墨基粘结固体润滑涂层加速气蚀10 h后脱落面积高达95.83%;石墨基粘结固体润滑涂层抗气蚀性能较好,涂层脱落面积为84.73%,更适合作为止推轴承表面润滑耐磨抗气蚀涂层使用.

    Abstract:

    To focus on the in-service performance of three types of solid lubricant coatings on the surface of aero-engine fuel pump thrust bearings in aviation kerosene under simulated actual working conditions, to clarify the intrinsic mechanism of frequent flake peeling during their use, and to select a coating with superior comprehensive performance. This study also aims to provide guidance for the future development of protective coatings with better lubrication, wear resistance, and anti-cavitation erosion functions. Using an MMW-1 vertical universal tribo-wear testing machine and an ultrasonic vibration cavitation erosion testing machine, the tribological and cavitation erosion properties of three bonded solid lubricating coatings mainly based on polyamide- imide (PAI) as a binder resin, MoS2/ graphite-based bonded solid lubricating coating, MoS2-based bonded solid lubricating coating, and graphite-based bonded solid lubricating coating, in RP-3 aviation kerosene were comparatively studied. To simulate actual working conditions closely, the gear material 2Cr3WMoV was selected as the counterpart material for tribological tests. Based on optical microscopy (OM), three-dimensional optical profilometry, and scanning electron microscopy (SEM), the original surface of the coatings and the surface morphology after friction and cavitation erosion were analyzed. The phase composition of the coatings before and after friction were compared using a high-resolution X-ray diffractometer (XRD). Raman spectroscopy was used to characterize the components of the friction transfer films and the cavitation erosion peeling debris of the coatings, and the protection and failure mechanisms of the coatings were discussed. The results showed that in the RP-3 medium, with graphite as a lubricant, the friction coefficient of graphite-based bonded solid lubricating coating was as low as 0.083, and the wear rate was 1.5×10−6 mm3/(N·m), exhibiting the best tribological performance. The original solid lubricant particles embedded in the resin structure in the microstructure of MoS2/graphite-based bonded solid lubricating coating and graphite-based bonded solid lubricating coating disappeared, and a layered structure similar to scales appeared. There were no phase changes in the wear scar areas of the three coatings before and after friction, maintaining good tribological chemical stability. During the friction transfer process, the intensity ratio of D peak to G peak of graphite significantly increased, forming a graphite-like structure. The transfer films formed on the surface of the counterpart material was beneficial for further reducing the friction coefficient. The three coatings were subjected to dual attacks from cavitation load and cavitation heat in aviation kerosene, resulting in poor anti-cavitation erosion performance, showing the characteristic of "filler particles falling off first accelerating flake peeling" of the coating, and a "melt bead" structure not present in the original structure of the coating appears on the coating surface. Due to the poor load-bearing capacity and large particle size of MoS2, the degree of cavitation erosion peeling was the most serious, resulting the MoS2/ graphite-based bonded solid lubricating coating to fall off with an area of up to 95.83% after 10 hours of accelerated cavitation erosion. The anti- cavitation erosion performance of graphite-based bonded solid lubricating coating was better, with a coating fall-off area of 84.73%. The Raman spectroscopy results of the fallen debris from the three coatings indicated that cavitation erosion has little effect on the layered structure and phase composition of graphite and MoS2. In summary, we believe that the comprehensive operational performance of graphite-based bonded solid lubricating coating is more suitable for promoting the use of thrust bearing surfaces at this stage.

  • 图  1   (a) MMW-1立式万能摩擦磨损试验机大销盘摩擦副示意图;(b)超声振动气蚀试验机工作示意图

    Figure  1.   (a) Schematic diagram of large pin-on-disc friction pair of MMW-1 vertical universal tribo-wear testing machine; (b) Working schematic diagram of ultrasonic vibration cavitation erosion testing machine

    图  2   (a) MoS2/石墨基粘结固体润滑涂层、(b) MoS2基粘结固体润滑涂层、(c)石墨基粘结固体润滑涂层与RP-3航空煤油的接触角;(d) MoS2/石墨基粘结固体润滑涂层、(e) MoS2基粘结固体润滑涂层、(f)石墨基粘结固体润滑涂层的三维形貌

    Figure  2.   Contact angle diagram of (a) MoS2/ graphite-based bonded solid lubricating coating, (b) MoS2-based bonded solid lubricating coating, (c) graphite-based bonded solid lubricating coating with RP-3 aviation kerosene; Three-dimensional topography of (d) MoS2/ graphite-based bonded solid lubricating coating, (e) MoS2-based bonded solid lubricating coating, (f) graphite-based bonded solid lubricating coating

    图  3   涂层的表面微观形貌和元素面分布图:(a, d)MoS2/石墨基粘结固体润滑涂层;(b, e)MoS2基粘结固体润滑涂层;(c, f)石墨基粘结固体润滑涂层

    Figure  3.   Surface micro-morphology and elemental plane distribution diagram of coatings: (a, d) MoS2/ graphite-based bonded solid lubricating coating; (b, e) MoS2-based bonded solid lubricating coating; (c, f) graphite-based bonded solid lubricating coating

    图  4   (a)样品的平均摩擦系数、(b)动态摩擦系数曲线和(c)磨损率

    Figure  4.   (a) The average friction coefficient, (b) curve of dynamic friction coefficient diagram and (c) wear rate of samples

    图  5   涂层磨损表面的OM图和SEM图:(a, d) MoS2/石墨基粘结固体润滑涂层;(b, e) MoS2基粘结固体润滑涂层;(c, f)石墨基粘结固体润滑涂层

    Figure  5.   OM and SEM images of worn surfaces of coatings: (a, d) MoS2/ graphite-based bonded solid lubricating coating; (b, e) MoS2-based bonded solid lubricating coating; (c, f) graphite-based bonded solid lubricating coating

    图  6   涂层磨斑区域摩擦前后的XRD图:(a) MoS2/石墨基粘结固体润滑涂层;(b) MoS2基粘结固体润滑涂层;(c)石墨基粘结固体润滑涂层

    Figure  6.   XRD patterns of worn area of coatings before and after friction: (a) MoS2/ graphite-based bonded solid lubricating coating; (b) MoS2-based bonded solid lubricating coating; (c) graphite-based bonded solid lubricating coating

    图  7   对偶材料表面形成的转移膜:(a) MoS2/石墨基粘结固体润滑涂层的对偶材料;(b) MoS2基粘结固体润滑涂层的 对偶材料;(c)石墨基粘结固体润滑涂层的对偶材料

    Figure  7.   Transfer films formed on the surface of dual-materials: (a) MoS2/ graphite-based bonded solid lubricating coating’s counterpart materials; (b) MoS2-based bonded solid lubricating coating’s counterpart materials; (c) graphite-based bonded solid lubricating coating’s counterpart materials

    图  8   涂层及其对偶材料上转移膜的拉曼图谱:(a) MoS2/石墨基粘结固体润滑涂层;(b)MoS2基粘结固体润滑涂层

    Figure  8.   Raman spectra of transfer films on coatings and their counterpart materials: (a) MoS2/ graphite-based bonded solid lubricating coating; (b) MoS2-based bonded solid lubricating coating

    图  9   涂层及其对偶材料上转移膜的拉曼图谱:(a) MoS2/石墨基粘结固体润滑涂层;(b)石墨基粘结固体润滑涂层

    Figure  9.   Raman spectra of transfer films on coatings and their counterpart materials: (a) MoS2/ graphite-based bonded solid lubricating coating; (b) graphite-based bonded solid lubricating coating

    图  10   3种涂层气蚀不同时间后的表面照片

    Figure  10.   Photos of the surface morphology of three coatings after different periods of cavitation erosion

    图  11   3种涂层在不同气蚀时间后的比面积损失

    Figure  11.   Specific surface area loss of three coatings after different cavitation erosion times

    图  12   涂层气蚀1 h后的微观表面形貌:(a, d)MoS2/石墨基粘结固体润滑涂层;(b, e)MoS2基粘结固体润滑涂层;(c, f)石墨基粘结固体润滑涂层

    Figure  12.   Microscopic surface morphologies of coatings after one hour of cavitation erosion: (a, d) MoS2/ graphite-based bonded solid lubricating coating; (b, e) MoS2-based bonded solid lubricating coating; (c, f) graphite-based bonded solid lubricating coating

    图  13   石墨基粘结固体润滑涂层气蚀后脱落碎片的微观表面形貌和元素面分布图

    Figure  13.   Microscopic surface morphology and elemental plane distribution of the dislodged fragments after cavitation erosion of graphite-based bonded solid lubricating coating

    图  14   MoS2/石墨基粘结固体润滑涂层气蚀后的微观表面形貌和元素面分布图

    Figure  14.   Microscopic surface morphologies and elemental plane distribution map after cavitation erosion of MoS2/ graphite-based bonded solid lubricating coating

    图  15   涂层气蚀碎片的拉曼图谱:(a) MoS2/石墨基粘结固体润滑涂层;(b) MoS2基粘结固体润滑涂层;

    (c)石墨基粘结固体润滑涂层

    Figure  15.   Raman maps of debris from coatings after cavitation erosion test: (a) MoS2/ graphite-based bonded solid lubricating coating; (b) MoS2-based bonded solid lubricating coating; (c) graphite-based bonded solid lubricating coating

    表  1   三种粘结固体润滑涂层的成分及固化条件

    Table  1   Composition and curing conditions of 3 kinds of bonded solid lubricating coatings

    Product brand Solid lubricant Organic resin binder Curing conditions
    MoS2/ graphite-based MoS2, Graphite PAI 150 ℃ for 0.5 h, 280 ℃ for 1.0 h
    MoS2-based MoS2 PAI + EP 150 ℃ for 0.5 h, 170 ℃ for 1.0 h
    Graphite-based Graphite PAI + EP 150 ℃ for 0.5 h, 200 ℃ for 1.0 h
    下载: 导出CSV

    表  2   三种粘结固体润滑涂层和316L的密度

    Table  2   Densities of three bonded solid lubricating coatings and 316L

    Sample Density of the sample/(mg/mm3)
    MoS2/ graphite-based bonded
    solid lubricating coating
    1.96
    MoS2-based bonded solid
    lubricating coating
    1.91
    graphite-based bonded solid
    lubricating coating
    1.58
    316L 7.98[22]
    下载: 导出CSV
  • [1]

    Xing Tong, Xu Yezhou, Ruan Jian. Two-dimensional piston pump: principle, design, and testing for aviation fuel pumps[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1349–1360. doi: 10.1016/j.cja.2019.05.006.

    [2] 陈光, 洪杰, 马艳红. 航空燃气涡轮发动机结构[M]. 北京: 北京航空航天大学出版社, 2010].

    Chen Guang, Hong Jie, Ma Yanhong. Structure of aviation gas turbine engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2010

    [3] 袁雪, 张岩松, 邱大明, 等. 航空发动机转子轴向力动态特征测试技术[J]. 航空动力学报, 2021, 36(9): 1804–1810]. doi: 10.13224/j.cnki.jasp.20210140.

    Yuan Xue, Zhang Yansong, Qiu Daming, et al. Test technique for dynamic characteristic of rotor axial force on aero-engine[J]. Journal of Aerospace Power, 2021, 36(9): 1804–1810 doi: 10.13224/j.cnki.jasp.20210140

    [4]

    Gao Tian, Yuan Simin, Liu Yongqiang, et al. Paroxysmal impulse vibration analysis of an aero-engine dual-rotor system with a defective inner ring for the inter-shaft bearing[J]. Communications in Nonlinear Science and Numerical Simulation, 2024, 131: 107864. doi: 10.1016/j.cnsns.2024.107864.

    [5]

    Wei Shijie, Wang Junru, Cui Jian, et al. Online monitoring of oil film thickness of journal bearing in aviation fuel gear pump[J]. Measurement, 2022, 204: 112050. doi: 10.1016/j.measurement.2022.112050.

    [6] 吴彼, 张振波, 李曙. 航空发动机材料摩擦学研究进展[J]. 摩擦学学报, 2023, 43(10): 1099–1117]. doi: 10.16078/j.tribology.2023226.

    Wu Bi, Zhang Zhenbo, Li Shu. Advances in tribology of aero-engine materials[J]. Tribology, 2023, 43(10): 1099–1117 doi: 10.16078/j.tribology.2023226

    [7] 王奇, 周海滨, 姚萍屏, 等. 干摩擦条件下磨损图的研究进展[J]. 润滑与密封, 2016, 41(10): 123–133]. doi: 10.3969/j.issn.0254-0150.2016.10.023.

    Wang Qi, Zhou Haibin, Yao Pingping, et al. Research progress of wear map under dry friction condition[J]. Lubrication Engineering, 2016, 41(10): 123–133 doi: 10.3969/j.issn.0254-0150.2016.10.023

    [8]

    Ranade N V, Sarvothaman V, Ranade V V. Acoustic analysis of vortex-based cavitation devices: inception and extent of cavitation[J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8255–8268. doi: 10.1021/acs.iecr.1c01005.

    [9]

    Li Wenguang, Yu Zhibin, Kadam S. An improved cavitation model with thermodynamic effect and multiple cavitation regimes[J]. International Journal of Heat and Mass Transfer, 2023, 205: 123854. doi: 10.1016/j.ijheatmasstransfer.2023.123854.

    [10]

    Cao Haobo, Hou Guoliang, Fu Zhiqiang, et al. Design of high-entropy alloy coating for cavitation erosion resistance by different energy-induced dynamic cyclic behaviors[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3651–3663. doi: 10.1021/acsami.2c19210.

    [11]

    Xu Tongchao, Hou Guoliang, Cao Haobo, et al. Effect of adaptive nanocrystalline behaviors on the cavitation erosion performance of Cu47.5Zr45.1Al7.4 bulk metallic glass[J]. Journal of Materials Science & Technology, 2024, 196: 248–261. doi: 10.1016/j.jmst.2024.02.022.

    [12]

    Li Jiang, Wu Bo, Chen Haosheng. Formation and development of iridescent rings around cavitation erosion pits[J]. Tribology Letters, 2013, 52(3): 495–500. doi: 10.1007/s11249-013-0234-7.

    [13]

    Zhang Chaodong, Yu Wennian, Zhang Lu. Dynamic characteristics of tilting-pad coupled-bearing-rotor systems considering mixed lubrication and pad wear[J]. Tribology International, 2024, 192(192): 109287. doi: 10.1016/j.triboint.2024.109287.

    [14] 黄宇生, 黄玉凌, 王欣欣, 等. 某航空发动机止推轴承故障分析[J]. 西安航空学院学报, 2018, 36(3): 25–30,36]. doi: 10.3969/j.issn.1008-9233.2018.03.005.

    Huang Yusheng, Huang Yuling, Wang Xinxin, et al. Fault analysis of thrust bearing in an aero-engine[J]. Journal of Xi’an Aeronautical University, 2018, 36(3): 25–30,36 doi: 10.3969/j.issn.1008-9233.2018.03.005

    [15]

    Mukhtar S H, Gulzar A, Saleem S, et al. Advances in development of solid lubricating MoS2 coatings for space applications: a review of modeling and experimental approaches[J]. Tribology International, 2024, 192: 109194. doi: 10.1016/j.triboint.2023.109194.

    [16]

    Lince J R. Effective application of solid lubricants in spacecraft mechanisms[J]. Lubricants, 2020, 8(7): 74. doi: 10.3390/lubricants8070074.

    [17] 杨开明, 颜红侠, 张渊博, 等. 氮化硼/超支化聚硅氧烷-聚酰亚胺粘结固体润滑涂层的性能[J]. 摩擦学学报, 2022, 42(5): 1053–1062]. doi: 10.16078/j.tribology.2021176.

    Yang Kaiming, Yan Hongxia, Zhang Yuanbo, et al. Properties of boron nitride/hyperbranched polysiloxane-polyimide bonded solid lubricant coating[J]. Tribology, 2022, 42(5): 1053–1062 doi: 10.16078/j.tribology.2021176

    [18] 俞传永, 陈磊, 李红轩, 等. 八氨基倍半硅氧烷改性聚酰胺酰亚胺基润滑涂层的性能研究[J]. 涂料工业, 2019, 49(5): 8–15]. doi: 10.12020/j.issn.0253-4312.2019.5.8.

    Yu Chuanyong, Chen Lei, Li Hongxuan, et al. Study on properties of octa-amino polyhedral oligomeric silsesquioxane modified polyamide-imide based lubrication coatings[J]. Paint & Coatings Industry, 2019, 49(5): 8–15 doi: 10.12020/j.issn.0253-4312.2019.5.8

    [19] 马彦军. 基于原位增强粘结固体润滑涂层的设计、制备及性能研究[D]. 北京: 中国科学院大学, 2020.].

    Ma Yanjun. Design, Preparation and properties of in-situ reinforced bonded solid lubricating coatings. Beijing: University of Chinese Academy of Sciences, 2020

    [20] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 振动空蚀试验方法: GB/T 6383—2009[S]. 北京: 中国标准出版社, 2009.].

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. The method of vibration cavitation erosion test: GB/T 6383—2009[S]. Beijing: Standards Press of China, 2009

    [21] GB/T 30447—2013. 纳米薄膜接触角测量方法[S]. 北京: 中国标准出版社, 2013].

    GB/T 30447—2013. Measurement method for contact angle of nano-film surface[S]. Beijing: Standards Press of China, 2013

    [22] 王怡静. 腐蚀环境中 NiCrWMoCuCBFe 涂层的摩擦/气蚀性能研究[D]. 北京: 中国科学院大学, 2022].

    Wang Yijing. Friction/cavitation erosion properties of NiCrWMoCuCBFe coating in corrosive environment[D]. Beijing: University of Chinese Academy of Sciences, 2022

    [23]

    Liu Xiaoxu, Yamaguchi R, Umehara N, et al. Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication[J]. Wear, 2017, 390(18): 312–321. doi: 10.1016/j.wear.2017.08.012.

    [24]

    Song Haojie, Zhang Zhaozhu, Men Xuehu. Effect of nano-Al2O3 surface treatment on the tribological performance of phenolic composite coating[J]. Surface and Coatings Technology, 2006, 201(6): 3767–3774. doi: 10.1016/j.surfcoat.2006.09.084.

    [25]

    Zhuo Xin, Cao Jun, Huang Haibo, et al. Cavitation erosion resistance and tribological performance of PAI/PI/EP soft coating on 20CrMo[J]. Wear, 2024, 536(13): 205176. doi: 10.1016/j.wear.2023.205176.

    [26]

    Li Jianfeng, Cheng Yao, Song Wei, et al. Molecular origin of nanofriction contrast between graphite and MoS2 homojunctions in oil[J]. Cell Reports Physical Science, 2023, 4(12): 101731. doi: 10.1016/j.xcrp.2023.101731.

    [27]

    Kumar N, Kozakov A T, Ravindran T R, et al. Load dependent friction coefficient of crystalline graphite and anomalous behavior of wear dimension[J]. Tribology International, 2015, 88: 280–289. doi: 10.1016/j.triboint.2015.03.034.

    [28] 郭瑞超, 严正泽. 石墨双向吸附特性的研究[J]. 华东化工学院学报, 1990, 16(6): 639–645]. doi: 10.14135/j.cnki.1006-3080.1990.06.007.

    Guo Ruichao, Yan Zhengze. Investigation of double adsorption properties of graphite[J]. Journal of East China University of Science and Technology, 1990, 16(6): 639–645 doi: 10.14135/j.cnki.1006-3080.1990.06.007

    [29] Zhang Zixuan, Hou Guoliang, Wan Hongqi, et al. Effect of epoxy resin modification on the cavitation erosion resistance of polyamide-imide coatings [J/OL]. China Surface Engineering, 1-14[2024-11-13] (in Chinese)[张梓轩, 侯国梁, 万宏启等. 环氧树脂改性对聚酰胺酰亚胺涂层抗空蚀性能的影响[J]. 中国表面工程, 1-14[2024-11-13]. http://kns.cnki.net/kcms/detail/11.3905.TG.20240807.0905.002.html.
    [30] 杨瑞杰, 冶银平, 万宏启, 等. 聚酰亚胺粘结MoS2基固体润滑涂层在油介质中的摩擦学性能[J]. 摩擦学学报, 2011, 31(3): 278–282]. doi: 10.16078/j.tribology.2011.03.007.

    Yang Ruijie, Ye Yinping, Wan Hongqi, et al. Tribological properties of polyimide bonded MoS2 solid lubricant coatings in different oils[J]. Tribology, 2011, 31(3): 278–282 doi: 10.16078/j.tribology.2011.03.007

    [31]

    Wu Yuli, Hou Guoliang, Cui Haixia, et al. A functional coating with mechanoluminescent properties for sensing cavitation erosion and early warning of protection failure[J]. Composites Part B: Engineering, 2023, 266: 111021. doi: 10.1016/j.compositesb.2023.111021.

    [32]

    Liu Qi, Li Zhen, Du Sanming, et al. Cavitation erosion behavior of GH 4738 nickel-based superalloy[J]. Tribology International, 2021, 156: 106833. doi: 10.1016/j.triboint.2020.106833.

    [33]

    Wei Zheng, Wu Yuping, Hong Sheng, et al. Ultrasonic cavitation erosion behaviors of high-velocity oxygen-fuel (HVOF) sprayed AlCoCrFeNi high-entropy alloy coating in different solutions[J]. Surface and Coatings Technology, 2021, 409: 126899. doi: 10.1016/j.surfcoat.2021.126899.

    [34]

    Niebuhr D. Cavitation erosion behavior of ceramics in aqueous solutions[J]. Wear, 2007, 263(1-6): 295–300. doi: 10.1016/j.wear.2006.12.040.

    [35]

    Li Ning, Yang Rui, Tian Ye, et al. Synthesis of durable hydrophobic fluorinated polyurethanes with exceptional cavitation erosion resistance[J]. Tribology International, 2023, 177(2): 107973. doi: 10.1016/j.triboint.2022.107973.

    [36]

    Yu Xi, Deng Wenli, Chen Xinchun. Macroscopic superlubricity enabled by the tribopair of nc-Ag/MoS2 and hydrogenated graphitic-like carbon films under high contact stress[J]. Applied Surface Science, 2023, 611(3): 155814. doi: 10.1016/j.apsusc.2022.155814.

    [37]

    Nyberg H, Sundberg J, Särhammar E, et al. Extreme friction reductions during initial running-in of W–S–C–Ti low-friction coatings[J]. Wear, 2013, 302(1-2): 987–997. doi: 10.1016/j.wear.2013.01.065.

图(15)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-28
  • 修回日期:  2024-08-05
  • 录用日期:  2024-08-05
  • 网络出版日期:  2025-01-14

目录

    /

    返回文章
    返回