ISSN   1004-0595

CN  62-1224/O4

高级检索

改性碳纤维-MoS2复合涂层的高温摩擦学性能研究

高阳, 刘思思, 廖君慧, 赵鼎元, 刘金刚

高阳, 刘思思, 廖君慧, 赵鼎元, 刘金刚. 改性碳纤维-MoS2复合涂层的高温摩擦学性能研究[J]. 摩擦学学报(中英文), 2024, 44(4): 482−493. DOI: 10.16078/j.tribology.2022258
引用本文: 高阳, 刘思思, 廖君慧, 赵鼎元, 刘金刚. 改性碳纤维-MoS2复合涂层的高温摩擦学性能研究[J]. 摩擦学学报(中英文), 2024, 44(4): 482−493. DOI: 10.16078/j.tribology.2022258
GAO Yang, LIU Sisi, LIAO Junhui, ZHAO Dingyuan, LIU Jingang. High Temperature Tribological Properties of Modified CF in MoS2 Composite Coating[J]. Tribology, 2024, 44(4): 482−493. DOI: 10.16078/j.tribology.2022258
Citation: GAO Yang, LIU Sisi, LIAO Junhui, ZHAO Dingyuan, LIU Jingang. High Temperature Tribological Properties of Modified CF in MoS2 Composite Coating[J]. Tribology, 2024, 44(4): 482−493. DOI: 10.16078/j.tribology.2022258
高阳, 刘思思, 廖君慧, 赵鼎元, 刘金刚. 改性碳纤维-MoS2复合涂层的高温摩擦学性能研究[J]. 摩擦学学报(中英文), 2024, 44(4): 482−493. CSTR: 32261.14.j.tribology.2022258
引用本文: 高阳, 刘思思, 廖君慧, 赵鼎元, 刘金刚. 改性碳纤维-MoS2复合涂层的高温摩擦学性能研究[J]. 摩擦学学报(中英文), 2024, 44(4): 482−493. CSTR: 32261.14.j.tribology.2022258
GAO Yang, LIU Sisi, LIAO Junhui, ZHAO Dingyuan, LIU Jingang. High Temperature Tribological Properties of Modified CF in MoS2 Composite Coating[J]. Tribology, 2024, 44(4): 482−493. CSTR: 32261.14.j.tribology.2022258
Citation: GAO Yang, LIU Sisi, LIAO Junhui, ZHAO Dingyuan, LIU Jingang. High Temperature Tribological Properties of Modified CF in MoS2 Composite Coating[J]. Tribology, 2024, 44(4): 482−493. CSTR: 32261.14.j.tribology.2022258

改性碳纤维-MoS2复合涂层的高温摩擦学性能研究

基金项目: 国家自然科学基金项目(52175191)、湖南省青年科技人才项目(2022RC1133)、湖南省教育厅优秀青年项目(21B0118)和湖南省教育厅重点项目(22A0104)资助.
详细信息
  • 中图分类号: TH117.1; TG115.58

High Temperature Tribological Properties of Modified CF in MoS2 Composite Coating

Funds: This project was supported by the National Natural Science Foundation of China (52175191), Hunan Youth Science and Technology Talent Project (2022RC1133), Excellent Youth Program of Hunan Provincial Department of Education (21B0118) and Key Program of Hunan Provincial Department of Education (22A0104).
More Information
  • 摘要:

    为了改善高温下固体润滑复合涂层的稳定性,选择经过化学改性的纳米碳纤维对MoS2涂料进行性能优化,制备添加不同比例的改性粉末的涂料. 通过对粉末进行XPS、红外和形貌分析,表明碳纤维已经改性. 借助CFT-I型高速往复摩擦磨损试验机分别在不同温度条件下进行摩擦试验,利用超景深显微系统对不同条件涂层表面磨损的形貌进行观测,对磨损机理进行分析,探究添加量的最优比例. 试验结果表明:在试验温度分别为20、50和100 ℃时,添加质量分数1.5% CF-GO(氧化石墨烯改性碳纤维)涂料制备的涂层耐磨性能均优于其他的添加比例的涂层. 在干摩擦5 N载荷,试验温度为200 ℃时,添加质量分数1.5% CF-GO的涂层比未改性的涂层的磨痕深度、宽度分别减少66.1%、29.2%,涂层的耐磨性能有了很大的提高,进一步采用扫描电子显微镜(SEM)分析涂层的内部形貌可知,添加质量分数1.5%的 CF-GO时,涂层内部形成清晰的网状结构,从而使得该比例下的涂层同时具有抗高温变形、耐磨以及耐热等优异的性能.

    Abstract:

    After the CF was acidified, the fiber surface was silanized with KH550, and the carbon fiber powder after the GO and silanized treatment was poured into DMF solution. Finally, the GO was chemically grafted on the CF surface, which was denoted as CF-GO. CF-GO was added into MoS2 coating according to the mass fraction of 0.0%, 0.5%, 1.0%, 1.5% and 2.0%, respectively, to prepare coatings of different proportions. With the help of CFT-Ⅰ high-speed reciprocating friction and wear testing machine, and other conditions unchanged, the friction and wear experiments were carried out on five kinds of coatings under different addition ratios at the matrix temperatures of 20, 50, 100 and 200 ℃, respectively. Meanwhile, the surface wear morphology data of the coatings under different conditions were observed by the ultra-depth of field microscopic system. The wear mechanism of the coating was further analyzed by SEM, and the influence of temperature and the proportion of modified powder on the wear resistance and heat resistance of the coating was explored. The experimental results showed that: after infrared analysis of modified powder CF-GO, it was found that a secondary amide N-H characteristic peak appeared at 3 243 cm−1 on its surface, which was the amidation reaction between the amino group on the surface of carbon fiber after silanization and the carboxy group on the surface of GO to form an amide bond. The characteristic peak of C=C appeared at 1 628 cm−1 and the characteristic peak of Si-O-C appeared at 1 125 cm−1. XPS analysis showed that CF had different types and contents of elements at different stages, because different chemical treatments would change the types and contents of elements on CF surface. Finally, scanning electron microscopy was used to observe the morphology of CF before and after modification, and it was found that compared with the original CF, sheets of GO appeared on the surface of the modified CF. All these indicated that GO had been chemically grafted on carbon fiber. After testing the binding strength of the coating at room temperature, it was found that the maximum binding strength was 14.1 MPa when 1.5% CF-GO was added. At the experimental temperatures of 20, 50 and 100 ℃, the wear resistance of the coatings prepared by adding 1.5% CF-GO coating was better than that of other coatings. Compared with the coatings without modified powder, the wear depth of the coatings decreased by 33.3%, 23.6% and 14.2%, respectively. When the substrate temperature was 200 ℃, the wear depth of the coating with 1.5% CF-GO was reduced by 66.1% compared with the unmodified coating, and the wear resistance of the coating was improved to a great extent. This is because the modified carbon fiber can export heat inside the coating to the surface, and the graphene oxide on the surface can better combine the resin with the fiber. By giving full play to its optimization effect on high temperature deformation resistance, wear resistance and other properties, analysis of the wear topography of the coating surface showed that the height of the deformation zone of the coating was only 9.24 μm, the micro-cracks at the bottom of the wear mark were the least, and the area of the massive falling pit at the bottom was smaller than that of other proportions of the coating. Further analysis of the cross section morphology of the coating showed that, when 1.5% CF-GO was added, the fibers inside the coating form a network skeleton structure, which could maximize the enhancement effect of CF-GO. This study proved that coatings with 1.5% CF-GO had better heat resistance, stability and wear resistance, indicating that nano-carbon fibers modified by GO had good potential to effectively enhance the comprehensive properties of resin coatings.

  • 高性能复合固体润滑涂层在工业应用中延长零部件使用寿命具有非常重要的作用,是摩擦学领域(摩擦、磨损与润滑)重要的研究内容. 目前常用的固体润滑剂有:石墨、MoS2和聚四氟乙烯(PTFE)等材料. MoS2具有优异的润滑效果[1]、化学稳定性和耐温性能[2-4],由于MoS2涂层在高温下易发生变形,并且耐磨性较差,因此需要添加增强材料来提升MoS2涂料的耐热和耐磨性能.

    碳纤维(carbon fiber, CF)由于其具有优异的力学与导热性能,被广泛用作复合物的增强材料,然而CF的润湿性差,具有较强的表面化学惰性,导致界面附着力较差,这极大地限制了CF在复合材料中的增强效果. 随着研究的进一步深入,学者们发现对CF表面进行改性[5-7],可以显著增强复合材料的力学性能[8-9]、耐磨性能[10-11]和耐热性能[12]. 氧化石墨烯(graphene oxide,GO)在改善复合材料的性能方面显示出巨大的潜力[13],不仅有着良好的导热性能[14-19],其内部的含氧官能团还能够增强纤维与基体的结合性能[20-22],并从结构上改变热和力学性能[23-26]. 目前,用GO改性CF的方法主要包括直接涂覆[27]、电泳沉积[28-29]、化学气相沉积[30-31]、化学接枝[32-34]和溶剂热处理[35]等. 在这些方法中,化学接枝方法制备的改性碳纤维表现出更强的结合力,能够有效增强复合涂层耐磨性能以及高温下的稳定性.

    基于此,本文中首先对CF进行化学改性,制备改性粉末CF-GO,将其以不同比例加入MoS2涂料中并制备涂层,通过对该复合涂层的磨损形貌和结构进行表征,分别在20、50、100和200 ℃条件下研究在该涂料中添加CF-GO的最佳比例及磨损机理.

    纳米CF,长度为150~300 μm,直径为30~50 nm,由北京德科岛金科技有限公司提供. GO由凯纳碳素新材料股份有限公司提供,无水乙醇、硝酸、硫酸、丙酮(分析纯)和硅烷偶联剂(KH550)由南京创世化工助剂有限公司提供,二硫化钼涂料(主要成分为MoS2与环氧树脂)和铝合金样块由湖南江滨机器(集团)有限责任公司提供,去离子水为实验室自制.

    HNO3:H2SO4以体积比1:1制备150 mL的混合溶液,将3 g CF加入其中,在100 ℃下酸化2 h,在CF的表面接枝羟基、羧基. 将接枝后的CF离心处理0.5 h,去除上层清液,加入去离子水、无水乙醇搅拌后再次离心,重复上述步骤,当溶液的PH值呈中性时,将其倒入烧杯,80 ℃真空干燥4 h,得到表面经过酸化处理的CF,记为CF-AT.

    首先配制100 mL硅烷偶联剂溶液,先加入硅烷偶联剂20 mL,再加入无水乙醇72 mL,最后加入去离子水8 mL,搅拌均匀. 将3 g CF-AT加入到该溶液中搅拌,再加入无水乙醇混合,采用磁力搅拌、超声依次处理0.5 h. 将该溶液倒入烧瓶中油浴(硅油)加热至78 ℃时磁力搅拌回流4 h. 反应完成后离心处理0.5 h,去除上层清液,加入去离子水、无水乙醇搅拌后再次离心,重复上述步骤4次,以去除CF表面附着的多余硅烷偶联剂. 将处理完成的溶液倒入烧杯,80 ℃真空干燥4 h,得到经过硅烷改性的CF,记为CF-ST.

    先将0.1 g的GO加入到150 mL的DMF (二甲基甲酰胺)溶液中,再加入1 g的CF-ST,采用磁力搅拌、超声依次处理0.5 h,最终获得均匀分布的悬浮液. 将该溶液倒入烧瓶中油浴(硅油)加热至105 ℃时,磁力搅拌回流6 h. 反应完成后进行离心处理,去除上层清液,加入去离子水、无水乙醇搅拌后再次离心,重复上述步骤4次,除去CF表面物理附着的氧化石墨烯以及多余的DMF. 将处理完成的溶液倒入烧杯,80 ℃真空干燥6 h,得到氧化石墨烯改性碳纤维,记为CF-GO,其制备流程如图1所示.

    图  1  CF-GO 制备工艺流程图
    Figure  1.  CF-GO preparation process flow chart

    试验基体为10 mm×10 mm×5 mm的铝合金样块、直径10 mm长30 mm的圆柱样块,其预制备涂层的表面经过精磨,并且在磷酸盐在溶液中进行磷化处理. 按表1中的配比称量MoS2涂料和CF-GO粉末,使用玻璃棒初步混合后,置于磁力搅拌器上搅拌0.5 h,搅拌完成后,需要将涂料静置24 h,等待其内部的空气排出. 将搅拌均匀且去除空气的涂料采用湿膜厚度为80 μm涂膜棒在铝合金样块及圆柱样块表面制备涂层,并在200 ℃条件下固化2 h,具体配比列于表1中.

    表  1  涂料与固体填料的质量分数
    Table  1.  Ratio of coating binder and solid filler
    NumberMass fraction/%
    MoS2 coatingCF-GO
    11000.0
    299.50.5
    3991.0
    498.51.5
    5982.0
    下载: 导出CSV 
    | 显示表格

    采用傅里叶红外光谱仪(IRTracer-100,SHIMADZU,Japan)对粉末改性各个阶段的化学键及官能团进行分析. 采用X射线光电子能谱(XRD, K-Alpha, Thermo Fisher Scientific, America)对粉末改性各个阶段的元素成分进行分析. 使用场扫描电镜SEM (Sigma500,ZEISS,Germany)对初始粉末及改性完成阶段的粉末进行形貌分析. 采用综合摩擦磨损测试仪(CFT-I,兰州中科凯华科技开发有限公司,中国)在不同温度下对涂层的摩擦学性能进行磨损试验. 采用超景深显微镜(VH-2000C,Keyence,Japan)对涂层表面宏观磨痕形貌进行分析并对其磨痕宽度和深度进行测量;对样块截面制样,测其涂层厚度. 使用扫描电镜SEM (TESCAN MIRA, TESCAN, Czech Republic)对涂层内部形貌结构进行表征. 使用万能材料试验机(UTM4204X,三思纵横科技股份有限公司,中国)对涂层界面结合强度进行检测.

    图2所示为CF-ST、CF-GO和GO红外光谱图. CF-AT-ST表面特征峰显示,2 925 cm−1出现-CH2-伸缩振动峰,1 725 cm−1出现C=O伸缩振动峰,1 035 cm−1出现C-O伸缩振动峰,1 125 cm−1出现Si-O-C伸缩振动峰,这证明硅烷偶联剂(KH550)与CF表面基团发生缩合反应形成化学键,接枝在CF表面. CF-GO表面特征峰显示,3 243 cm−1处峰属于仲酰胺N-H伸缩振动,这是因为CF-ST表面氨基基团与GO表面羧基发生酰胺化反应生成酰胺键,同时2 925 cm−1为-CH2-的伸缩振动峰,1 725 cm−1为C=O伸缩振动峰,1 628 cm−1处峰为GO的C=C特征峰,1 125 cm−1为Si-O-C伸缩振动峰,1 035 cm−1为C-O伸缩振动峰,这些峰均可以与CF-ST和GO特征峰对应,这表明GO通过化学反应形成化学键接枝在CF表面上. GO表面特征峰显示,3 410 cm−1附近有1个较宽、较强的吸收峰,这归属于-OH拉伸振动峰,1 720、1 620、和1 053 cm−1分别对应C=O、C=C和C-O拉伸振动峰.

    图  2  CF-ST、CF-GO和GO的红外光谱图
    Figure  2.  Surface infrared spectra of CF-ST、CF-GO和GO

    对经过不同改性处理阶段的CF和GO进行X射线光电子能谱测试,通过检测粉末表面化学元素含量变化,证明CF表面接枝了GO. 图3所示为CF不同改性处理阶段XPS的全谱曲线,其对应表面元素含量列于表2中. 由图3可知,未处理的CF主要成分为C元素,质量分数为97.79%,对应曲线中最高的C 1s峰,此外还含有少量O元素,质量分数为2.21%,对应较弱的O 1s峰. 经过酸化处理(AT)后,CF表面的O 1s峰有了明显的增强,质量分数增加了6.24%,这表明CF表面已经酸化,此时CF表面含有大量羧基、羟基等官能团. 接下来对酸化的CF粉末进行硅烷化处理(ST)后,得到CF-ST粉末,其曲线上产生了N 1s、Si 2p元素,质量分数分别为2.88%、2.68%,这2种元素为硅烷偶联剂中特有的元素,即表明已经接枝偶联剂(KH550). 接下来在接枝GO后,由CF-GO曲线可知,该曲线上同时含有C、O、N和Si这4种元素,并且从表2可以发现,对比CF-ST处理后的粉末元素含量,C、N和Si这3种元素质量分数分别下降了3.72%、0.31%和0.21%,但O的质量分数有了较大提升,增加了4.24%,这是因为GO含有的大量含氧官能团接枝到CF表面导致的,这说明GO接枝在CF表面.

    图  3  不同改性处理阶段CF的XPS全谱图
    Figure  3.  XPS full spectrum of CF in different modification treatment stage
    表  2  不同处理阶段CF表面元素含量
    Table  2.  Element content of CF surface in different treatment stages
    Materials Mass fraction/%
    C O N Si
    GO 69.98 30.02 ̶ ̶
    CF 97.79 2.21 ̶ ̶
    CF-AT 91.55 8.45 ̶ ̶
    CF-ST 87.98 6.47 2.88 2.68
    CF-GO 84.26 10.7 2.57 2.47
    下载: 导出CSV 
    | 显示表格

    图4所示为粉末改性前后形貌的SEM照片. 图4(a)所示为未经处理的纳米碳纤维(CF), 图4(b)所示为改性完成的CF-GO. 在图4(a)中,纳米碳纤维表面光滑,没有其他附着物;图4(b)所示为改性后的CF-GO. 从图4(b)中可以清晰地看出,相较于图4(a)中未处理的CF,图4(b)中CF的表面附着了大量的片状物,这些片状物均为GO,通过化学键接枝在CF上.

    图  4  粉末改性前后形貌的SEM照片
    Figure  4.  SEM micrographs of morphology before and after powder modification

    涂层的制备采用湿膜厚度为80 μm涂膜棒,测得的涂层厚度如图5所示. 涂层的厚度分别为83、88和86 μm.

    图  5  涂层厚度
    Figure  5.  Coating thickness

    上下试样的黏结剂采用ergo-9900金属专用胶,拉伸速度为1 mm/min. 不同改性碳纤维添加比例下的涂层结合强度测试曲线如图6所示. 由图6可知,添加质量分数为0%时涂层的结合强度为11.2 MPa,添加质量分数分别为0.5%、1.0%和1.5%时,涂层的结合强度分别为12.3、12.8和14.1 MPa,当质量分数增大至2.0%时,涂层的结合强度下降为12.3 MPa. 由于改性碳纤维通过表面的大量含氧官能团与树脂涂料化学结合在一起,因此其结合强度随着碳纤维的增多而增大,并在质量分数为1.5%时达到最大;当添加比例为2.0%时,由于添加的改性碳纤维过多,涂层内部出现了纤维聚集,会导致涂层的结合强度在一定程度上降低.

    图  6  涂层结合强度
    Figure  6.  Coating bonding strength

    将改性后的CF-GO粉末添加至二硫化钼涂层溶液中,搅拌均匀后刷涂至试样表面,涂层厚度为85±5 μm,并在200 ℃条件下固化2 h,采用高速往复摩擦磨损试验机(CFT-I)开展摩擦试验,采用球-样摩擦副,上试样为直径5 mm的钢球,下试样为试验样块. 对CF-GO质量分数分别为0.0%、0.5%、1.0%、1.5%和2.0%的涂层表面采用往复点面接触模式,往复行程为10 mm,干摩擦条件下,载荷为5 N,速度为300 r/min,相对摩擦时间为30 min,当基体温度分别为20、50、100和200 ℃时,进行摩擦磨损试验.

    图7所示为20~200 ℃时涂层的磨痕深度及宽度图. 图7(a)所示为涂层的磨痕深度图,图7(b)所示为涂层的磨痕宽度图. 在图7(a~b)中,不同温度下的涂层磨损深度均出现了类似的曲线,即控制试验条件相同的情况下,在2组图中,磨痕深度及磨痕宽度均在改性CF-GO质量分数为1.5%时最小. 图7(a)中,当添加改性CF-GO质量分数从0.0%增加至1.5%时,磨损的深度减至最小,随着添加质量分数的继续增大,其磨痕深度则开始增加;随着温度从20 ℃增加至200 ℃,添加改性的CF-GO质量分数为1.5%时,其磨痕深度较未添加时分别减小了33.3%、23.6%、14.2%和66.1%. 图7(b)中,随着添加改性的CF-GO质量分数从0.0%增加至1.5%时,磨痕的宽度在1.5%时达到最小值,随着添加质量分数的继续增大,其磨痕宽度开始增加,随着温度增加,添加改性的CF-GO质量分数为1.5%时,其磨痕宽度较未添加时分别减小了8.1%、19.3%、8.1%和29.2%. 这是由于在涂料中添加了改性的纳米碳纤维,该改性粉末表面含有大量的官能团,其分布在涂层的内部,可以与树脂基体相结合,使得涂层内部的结构更为紧密,在适当的添加比例下,能够对涂层整体的耐磨性能产生显著的增强效果. 这表明在20~200 ℃的温度条件下,添加CF-GO质量分数为1.5%的复合涂层耐磨效果最佳,并且随着涂层温度的变化,磨痕深度、宽度始终较小,耐磨性能稳定性最好.

    图  7  涂层的磨痕深度及宽度图
    Figure  7.  Depth and width of wear marks of coating

    不同温度下涂层的摩擦系数如图8所示. 由图8可知,当温度为20~100 ℃时,这几组温度下的摩擦系数都在CF-GO质量分数为1.5%时最小. 当添加的碳纤维逐渐从0.0%增加至1.5%时,涂层内部的纤维与树脂的结合程度更高,涂层在摩擦过程中不易被磨损脱落,其磨痕深度较浅,钢球与涂层接触面小,受到的摩擦阻力小,摩擦系数也最小;当添加比例继续增大,涂层内部会出现纤维聚集现象,对树脂内部的三维共价键网络产生影响,部分区域易在摩擦过程中脱落,产生的磨痕较深,使得钢球与涂层的接触面增大,进而导致了摩擦系数的增大.

    图  8  涂层的摩擦系数图
    Figure  8.  Friction coefficient diagram of coating

    当温度增加至200 ℃时,添加质量分数0.5% CF-GO和1.0% CF-GO的摩擦系数开始增大,这是由于添加了这2种比例CF-GO涂层的表面存在一定量的改性碳纤维,而碳纤维高温下性质会发生变化,使其与树脂的结合更紧密,在摩擦过程纤维不易被磨损脱落,对钢球的运动产生一定的摩擦阻力,从而使得涂层的摩擦系数增大;随着添加的改性粉末质量分数增大至1.5%时,碳纤维会均匀分布在涂层表面,形成较密的网状结构,涂层在摩擦中不易脱落,磨痕深度也更小,钢球在磨损过程中受纤维的阻力最小,摩擦系数也就相应的减小;随着添加质量分数继续增大至2.0%,涂层内部的纤维出现聚集,树脂形成的三维共价键网络被破坏,涂层在摩擦过程中会被快速损耗,此时钢球与涂层的接触面增大,受到的摩擦阻力增大,因此其摩擦系数也增大.

    随着温度的不断升高,添加质量分数1.5% CF-GO改性纳米碳纤维的复合涂层可以稳定发挥耐磨减摩作用. 在200 ℃下,涂层的磨损相较于其他温度出现了明显的变化,为了探究在该温度下涂层性能的变化原因,对其耐磨耐热机理进行了深入的分析研究.

    涂层在200 ℃高温干摩擦条件下5 N载荷时的磨损热变形形貌如图9所示. 图9(a)所示为未添加CF-GO涂料制备的涂层的磨损形貌,从图9(a)的涂层磨痕可以发现,磨痕左侧的变形高度为31.41 μm;从磨痕底部形貌可知,有部分区域出现块状脱落坑,这是由于在高温时涂料内部耐热性较差,导致受热不均匀,而钢球在往复运动时,磨痕底部涂料附着于钢球上,从而脱落,形成凹坑. 图9(b)所示为添加质量分数0.5%的CF-GO制备的涂层磨损形貌,从图9(b)中可以发现,磨痕的左侧的变形高度为25.45 μm,有部分区域在磨损中变形,从磨痕底部形貌可知,同样出现了块状脱落坑,但相对于图9(a)而言,其数量较少、面积较小,这是因为CF-GO的表面有大量的含氧官能团,能够与涂料中的环氧树脂结合的更紧密,在添加了少量的改性粉末后,其表面的耐热、耐磨性能有了一定的提升. 图9(c)所示为添加质量分数1.0%的CF-GO制备的涂层磨损形貌,从图9(c)中可以发现,变形区的变形高度为23.15 μm,底部形貌中的块状脱落坑数量相较于图9(b)而言更少了,这表明随着添加的CF-GO的增多,其表面的耐热性能也在进一步增强. 图9(d)所示为添加质量分数1.5%的CF-GO制备的涂层的磨损形貌,从图9(d)中可以发现,已经没有了高温变形区和块状脱落坑,其磨痕左侧的变形高度仅有9.24 μm,这是因为在添加质量分数1.5%的CF-GO后,纤维能够与涂料内部的三维共价键网络结合后在涂层内部形成骨架结构,不仅具有良好的耐磨性能,同时能够在高温下保持良好的稳定性. 图9(e)所示为添加质量分数2.0%的CF-GO制备的涂层磨损形貌,从图9(e)中可以发现,磨痕左右两侧处出现了大面积的变形,变形区的变形高度为35.86 μm,由于CF-GO添加过多,涂层整体的内部碳纤维分布不均匀,不能有效地在内部形成骨架结构,并且其内部的树脂三维共价键网络被破环,因此涂层会在磨损中变形,最终堆积在磨痕两侧. 在这种添加比例下涂层内部碳纤维过多导致涂层内部的三维共价键网络结构被破坏,涂层的耐热性和稳定性下降较快. 综合对比,添加质量分数为1.5%的CF-GO制备的涂层耐热性和稳定性性能最好.

    图  9  高温下涂层热变形的超景深显微形貌图
    Figure  9.  Ultra-deep microscopic image of coating thermal deformation at high temperatures

    为了得到高温下涂层的磨损机理,深入研究其耐磨、耐热性能,对不同CF-GO添加比例涂层的内部结构进行了分析. 图10所示为不同添加CF-GO比例下的涂层内部结构形貌图. 从图10(a)可知,当未添加CF-GO时,涂料主要成分为树脂与MoS2粉末,涂层的内部无特殊结构;图10(b~c)开始添加少量CF-GO (0.5%~1.0%)后,涂层内部的树脂与CF-GO结合在一起,但由于此时的CF-GO含量较少,只分布在涂层的部分区域;从图10(d)中可以看出,当添加CF-GO的质量分数达到1.5%时,CF-GO均匀分布在涂层的内部,从结构上表现出网格结构,此时树脂基体与CF-GO结合在一起,涂层不仅可以通过CF-GO将树脂内部的热量导出,提高涂层整体的耐热性能,同时可以发挥碳纤维的增强效果,使树脂形成的三维共价键网络与纤维牢牢地结合在一起,提高涂层的耐磨性能,这可以解释高温下图9(d)中1.5%组涂层磨痕较小的原因;从图10(e)图中可以看出,当添加CF-GO的质量分数继续增大至2.0%时,右下方区域由碳纤维形成的结构与图10(d)中的区域基本一致,但此时左侧的纤维数量较多,这是由于添加的CF-GO过多,导致了涂层内部的部分区域纤维会分布不均匀,三维共价键网络内部结构杂乱,与添加质量分数1.5% CF-GO的涂层形成了明显的对比,这也解释了图9(e)中涂层被磨穿以及变形较大的原因.

    图  10  涂层内部结构形貌的SEM照片
    Figure  10.  SEM micrographs of the internal structure of the coating

    不同改性碳纤维添加比例下涂层的内部结构及传热示意图如图11所示. 未添加改性粉末的涂料,热量无法快速传递至涂层表面,会致使涂层在磨损过程中出现变形;随着添加的质量分数增加为0.5%~1.0%时,涂层内部有了少量改性碳纤维形成的结构,提升了涂层的耐热和耐磨性能;当添加质量分数达到1.5%时,涂层的内部网状导热结构均匀分布在涂层内部,既可以减小涂层高温磨损时变形程度,又可以很好的结合树脂涂料,充分发挥其对于抗高温变形和耐磨等性能的优化效果;当添加质量分数增大至2.0%时,涂层内部会出现纤维分布不均匀,内部部分区域出现纤维聚集,导致其温度较高,涂层易出现较大程度的变形. 这与图9图10的结论相互印证,共同阐述了改性碳纤维改性MoS2涂层高温下的磨损机理.

    图  11  涂层内部结构及传热示意图
    Figure  11.  Internal structure and heat transfer diagram of coating

    添加质量分数1.5%比例涂层的摩擦系数及磨痕深度如图12所示. 由图12(a)可知,随着基体温度从20 ℃逐渐增至200 ℃,涂层的平均摩擦系数保持稳定,在0.3~0.33之间.

    图  12  涂层性能对比图
    Figure  12.  Comparison of coating properties

    图12(b)可知,在20~100 ℃时,此时由于温度变化程度小,涂层受到温度变化带来的影响低,因此这几种温度下的涂层磨痕深度较为接近;当温度大幅度增加至200 ℃后,磨痕深度有了较大的变化,其磨痕深度平均值约为14.8 μm,此时其该纤维具有的热缩性能可以和涂层内部树脂与纤维形成的三维共价键网络共同发挥作用,使得涂层的内部结构更紧密,因此涂层的磨痕深度有了一定的降低. 这综合表明该添加比例下的涂层在200 ℃高温下依然可以稳定发挥耐热性能、耐磨的作用.

    a. 在基体温度分别为20、50、100和200 ℃时,涂层的磨痕深度、宽度均在添加改性粉末质量分数为1.5%时最小,涂层的变形最小、耐磨性能最好,这表明添加该比例的涂层在该温度范围内,能够发挥其耐磨的作用.

    b. 在200 ℃条件下,添加改性碳纤维质量分数为1.5%的涂层表现出最佳耐热性能和减摩抗磨性能,其表面磨损最小,并且磨痕周围没有明显的变形,磨痕底部也没有大面积的脱落出现;当添加的改性粉末质量分数继续增加至2.0%时,涂层的耐磨、耐热以及抗变形等性能出现了明显的下降.

    c. 添加了质量分数为1.5% CF-GO的涂层之所以有良好的耐热性、稳定性和耐磨性,是因为经过改性的纳米碳纤维,表面接枝了氧化石墨烯,当加入改性粉末后,纳米碳纤维可以充当涂层内部的骨架,其表面的氧化石墨烯能够与MoS2涂料中环氧树脂的官能团发生化学反应,使形成稳定的网状结构,可以兼顾耐高温与耐磨性能.

  • 图  1   CF-GO 制备工艺流程图

    Figure  1.   CF-GO preparation process flow chart

    图  2   CF-ST、CF-GO和GO的红外光谱图

    Figure  2.   Surface infrared spectra of CF-ST、CF-GO和GO

    图  3   不同改性处理阶段CF的XPS全谱图

    Figure  3.   XPS full spectrum of CF in different modification treatment stage

    图  4   粉末改性前后形貌的SEM照片

    Figure  4.   SEM micrographs of morphology before and after powder modification

    图  5   涂层厚度

    Figure  5.   Coating thickness

    图  6   涂层结合强度

    Figure  6.   Coating bonding strength

    图  7   涂层的磨痕深度及宽度图

    Figure  7.   Depth and width of wear marks of coating

    图  8   涂层的摩擦系数图

    Figure  8.   Friction coefficient diagram of coating

    图  9   高温下涂层热变形的超景深显微形貌图

    Figure  9.   Ultra-deep microscopic image of coating thermal deformation at high temperatures

    图  10   涂层内部结构形貌的SEM照片

    Figure  10.   SEM micrographs of the internal structure of the coating

    图  11   涂层内部结构及传热示意图

    Figure  11.   Internal structure and heat transfer diagram of coating

    图  12   涂层性能对比图

    Figure  12.   Comparison of coating properties

    表  1   涂料与固体填料的质量分数

    Table  1   Ratio of coating binder and solid filler

    NumberMass fraction/%
    MoS2 coatingCF-GO
    11000.0
    299.50.5
    3991.0
    498.51.5
    5982.0
    下载: 导出CSV

    表  2   不同处理阶段CF表面元素含量

    Table  2   Element content of CF surface in different treatment stages

    Materials Mass fraction/%
    C O N Si
    GO 69.98 30.02 ̶ ̶
    CF 97.79 2.21 ̶ ̶
    CF-AT 91.55 8.45 ̶ ̶
    CF-ST 87.98 6.47 2.88 2.68
    CF-GO 84.26 10.7 2.57 2.47
    下载: 导出CSV
  • [1]

    Liu Cong, Yin Yanguo, Tong Baohong, et al. Tribological properties of MoS2 powder-lubricated interface[J]. Industrial Lubrication and Tribology, 2021, 73(6): 839–845. doi: 10.1108/ilt-04-2020-0150.

    [2]

    Gupta D, Chauhan V, Kumar R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: past and recent developments[J]. Inorganic Chemistry Communications, 2020, 121: 108200. doi: 10.1016/j.inoche.2020.108200.

    [3]

    Zhu Shengyu, Cheng Jun, Qiao Zhuhui, et al. High temperature solid-lubricating materials: a review[J]. Tribology International, 2019, 133: 206–223. doi: 10.1016/j.triboint.2018.12.037.

    [4]

    Furlan K P, de Mello J D B, Klein A N. Self-lubricating composites containing MoS2: a review[J]. Tribology International, 2018, 120: 280–298. doi: 10.1016/j.triboint.2017.12.033.

    [5]

    Zheng Hao, Zhang Wenjian, Li Bowen, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review[J]. Composites Part B: Engineering, 2022, 233: 109639. doi: 10.1016/j.compositesb.2022.109639.

    [6]

    Mei Lei, He Xiaodong, Li Yibin, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters, 2010, 64(22): 2505–2508. doi: 10.1016/j.matlet.2010.07.056.

    [7]

    Dharmasiri B, Randall J, Yin Yanting, et al. Carbon reinforced carbon fibers: using surface modification as a route to enhanced physical performance[J]. Composites Science and Technology, 2022, 218: 109217. doi: 10.1016/j.compscitech.2021.109217.

    [8]

    Ma Lichun, Meng Linghui, Wu Guangshun, et al. Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol[J]. Composites Science and Technology, 2015, 114: 64–71. doi: 10.1016/j.compscitech.2015.04.011.

    [9] 马小龙, 敖玉辉, 肖凌寒, 等. 表面改性对碳纤维/酚醛树脂基复合材料摩擦性能的影响[J]. 材料研究学报, 2015, 29(2): 101–107]. doi: 10.11901/1005.3093.2014.356.

    Ma Xiaolong, Ao Yuhui, Xiao Linghan, et al. Effect of surface modification of carbon fiber on friction properties of carbon fiber/phenolic resin matrix composite[J]. Chinese Journal of Materials Research, 2015, 29(2): 101–107 doi: 10.11901/1005.3093.2014.356

    [10]

    Tang Hao, Zhou Hua, Cheng Xianhua. Friction process analysis of carbon fiber-carbon nanotube multiscale hybrid reinforced epoxy with excellent tribological performance[J]. Tribology International, 2022, 171: 107559. doi: 10.1016/j.triboint.2022.107559.

    [11]

    Wang Beibei, Fu Qiangang, Sun Le, et al. Improving the tribological performance of carbon fiber reinforced resin composite by grafting MWCNT and GNPs on fiber surface[J]. Materials Letters, 2022, 306: 130953. doi: 10.1016/j.matlet.2021.130953.

    [12] 董凤霞, 侯国梁, 刘亮, 等. 稀土改性对碳纤维增强聚酰亚胺复合材料在不同温度下摩擦学性能的影响[J]. 摩擦学学报, 2017, 37(2): 148–154]. doi: 10.16078/j.tribology.2017.02.002.

    Dong Fengxia, Hou Guoliang, Liu Liang, et al. Effect of surface treatment on carbon fibre by rare earth on the tribological properties of carbon fiber reinforced polyimide composite at elevated temperatures[J]. Tribology, 2017, 37(2): 148–154 doi: 10.16078/j.tribology.2017.02.002

    [13] 冯彦寒, 方建华, 吴江, 等. 石墨烯掺杂的陶瓷和金属自润滑材料研究进展[J]. 摩擦学学报, 2019, 39(4): 511–521]. doi: 10.16078/j.tribology.2019001.

    Feng Yanhan, Fang Jianhua, Wu Jiang, et al. Research progress on graphene doped ceramic and metal self-lubricating materials[J]. Tribology, 2019, 39(4): 511–521 doi: 10.16078/j.tribology.2019001

    [14] 王函, 孙新阳, 张建岗, 等. 石墨烯/碳纤维混杂复合材料的结构功能一体化研究进展[J]. 固体火箭技术, 2021, 44(6): 737–746]. doi: 10.7673/j.issn.1006-2793.2021.06.005.

    Wang Han, Sun Xinyang, Zhang Jiangang, et al. Research progress on the structure-function integration of graphene/carbon fiber hybrid composites[J]. Journal of Solid Rocket Technology, 2021, 44(6): 737–746 doi: 10.7673/j.issn.1006-2793.2021.06.005

    [15]

    Yang Jin, Xiao Qingfeng, Lin Zhe, et al. Growth of ultra-dense MoS2 nanosheets on carbon fibers to improve the mechanical and tribological properties of polyimide composites[J]. Friction, 2021, 9(5): 1150–1162. doi: 10.1007/s40544-020-0413-0.

    [16]

    Kim J, Kim S, Heo S J, et al. Longitudinal alignment effect of graphene oxide nanoribbon on properties of polyimide-based carbon fibers[J]. Carbon, 2022, 198: 219–229. doi: 10.1016/j.carbon.2022.07.020.

    [17]

    Kuilla T, Bhadra S, Yao Dahu, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11): 1350–1375. doi: 10.1016/j.progpolymsci.2010.07.005.

    [18]

    Huang Xiao, Qi Xiaoying, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666–686. doi: 10.1039/C1CS15078B.

    [19]

    Cheng Shan, Li Nan, Pan Yuxi, et al. Establishment of Silane/GO Multistage Hybrid Interface Layer to Improve Interfacial and Mechanical Properties of Carbon Fiber Reinforced Poly (phthalazinone ether ketone) Thermoplastic Composites[J]. Materials, 2021, 15(1): 206. doi: 10.3390/ma15010206.

    [20]

    Wang Caifeng, Li Jun, Yu Jiali, et al. Grafting of size-controlled graphene oxide sheets onto carbon fiber for reinforcement of carbon fiber/epoxy composite interfacial strength[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 511–520. doi: 10.1016/j.compositesa.2017.07.015.

    [21]

    Kim S H, Park S J. Effect of graphene oxide/graphitic nanofiber nanohybrids on interfacial properties and fracture toughness of carbon fibers-reinforced epoxy matrix composites[J]. Composites Part B: Engineering, 2021, 227: 109387. doi: 10.1016/j.compositesb.2021.109387.

    [22]

    Zhang Xiaoqing, Fan Xinyu, Yan Chun, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1543–1552. doi: 10.1021/am201757v.

    [23]

    Wu Qing, Yang Xin, He Jinqian, et al. Improved interfacial adhesion of epoxy composites by grafting porous graphene oxide on carbon fiber[J]. Applied Surface Science, 2022, 573: 151605. doi: 10.1016/j.apsusc.2021.151605.

    [24]

    Yuan Xiaomin, Zhu Bo, Cai Xun, et al. Micro-configuration controlled interfacial adhesion by grafting graphene oxide onto carbon fibers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 83–93. doi: 10.1016/j.compositesa.2018.05.010.

    [25]

    Sun Zheng, Li Yuanqing, Huang Pei, et al. Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers[J]. Composite Structures, 2021, 270: 114075. doi: 10.1016/j.compstruct.2021.114075.

    [26] 胡超, 徐静, 余家欣, 等. 氧化石墨烯/聚酰亚胺复合材料摩擦学行为及机理研究[J]. 摩擦学学报, 2020, 40(1): 12–20]. doi: 10.16078/j.tribology.2019139.

    Hu Chao, Xu Jing, Yu Jiaxin, et al. Tribological performance and mechanism of graphene oxide/polyimide[J]. Tribology, 2020, 40(1): 12–20 doi: 10.16078/j.tribology.2019139

    [27]

    Wang Cuicui, Zhao Yueying, Ge Heyi, et al. Enhanced mechanical and thermal properties of short carbon fiber reinforced polypropylene composites by graphene oxide[J]. Polymer Composites, 2018, 39(2): 405–413. doi: 10.1002/pc.23950.

    [28]

    Zhang R L, Gao B, Ma Q H, et al. Directly grafting graphene oxide onto carbon fiber and the effect on the mechanical properties of carbon fiber composites[J]. Materials & Design, 2016, 93: 364–369. doi: 10.1016/j.matdes.2016.01.003.

    [29]

    Xiao Peng, Wan Changjin, Gu Jincui, et al. 2D Janus hybrid materials of polymer-grafted carbon nanotube/graphene oxide thin film as flexible, miniature electric carpet[J]. Advanced Functional Materials, 2015, 25(16): 2428–2435. doi: 10.1002/adfm.201404624.

    [30]

    Wang Chao, Li Yibin, Tong Liyong, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites[J]. Carbon, 2014, 69: 239–246. doi: 10.1016/j.carbon.2013.12.020.

    [31]

    Yao Zhiqiang, Wang Chengguo, Wang Yanxiang, et al. Effect of CNTs deposition on carbon fiber followed by amination on the interfacial properties of epoxy composites[J]. Composite Structures, 2022, 292: 115665. doi: 10.1016/j.compstruct.2022.115665.

    [32]

    Li Yibin, Peng Qingyu, He Xiaodong, et al. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. Journal of Materials Chemistry, 2012, 22(36): 18748–18752. doi: 10.1039/C2JM32596A.

    [33]

    Ma Yunyun, Yan Chun, Xu Haibing, et al. Enhanced interfacial properties of carbon fiber reinforced polyamide 6 composites by grafting graphene oxide onto fiber surface[J]. Applied Surface Science, 2018, 452: 286–298. doi: 10.1016/j.apsusc.2018.04.274.

    [34] 尹宇航, 雷浩, 宋敬伏, 等. 改性石墨烯增强聚四氟乙烯摩擦学性能的分子模拟研究[J]. 摩擦学学报, 2022, 42(3): 598–608]. doi: 10.16078/j.tribology.2021139.

    Yin Yuhang, Lei Hao, Song Jingfu, et al. Molecular dynamics simulation on the tribological properties of polytetrafluoroethylene reinforced with modified graphene[J]. Tribology, 2022, 42(3): 598–608 doi: 10.16078/j.tribology.2021139

    [35]

    Li Y W, Zhao F, Song Y J, et al. Interfacial microstructure and properties of poly (phenylene benzobisoxazole) fiber grafted with graphene oxide via solvothermal method[J]. Applied Surface Science, 2013, 266: 306–312. doi: 10.1016/j.apsusc.2012.12.016.

图(12)  /  表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  28
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 修回日期:  2023-05-16
  • 录用日期:  2023-05-18
  • 网络出版日期:  2024-02-26
  • 发布日期:  2023-05-22
  • 刊出日期:  2024-04-27

目录

/

返回文章
返回
x 关闭 永久关闭