In-Situ Growth of Hydrogel Lubrication Film on Self-Adhesive Silicon Elastomer Surface and Its Performance
-
摘要:
在水体环境中,水凝胶润滑薄膜与基底之间可逆以及便捷的结合是润滑材料领域的挑战之一. 本研究中将自黏附硅橡胶与具有润滑功能的水凝胶相结合,获得了一种具有可逆湿黏附功能的水凝胶润滑材料. 在低交联度聚二甲基硅氧烷(PDMS)表面/亚表面填埋引发剂二苯甲酮,通过表面光引发聚合的方式使其表面生长具有润滑功能的水凝胶-聚(丙烯酸-co-丙烯酰胺)[P(AA-co-AAm)]. 研究结果表明:水凝胶与硅橡胶基材在交界处形成连接致密的一体结构. 当丙烯酸与丙烯酰胺摩尔比为1:1时,水凝胶表现出优异的摩擦学性能,并且力学强度较高. PDMS的模量随着固化剂含量增加而升高,而摩擦系数则呈现相反的趋势;当PDMS硅烷预聚体与固化剂质量比例为30:1时具有较好的机械性能、黏附性能以及较低的摩擦系数. 所制备的可黏附水凝胶使得水润滑材料具有水下可黏附特性,该体系与金属、陶瓷以及聚合物等多种基底表面均具有良好的黏附性能,多次重复黏附测试后,黏附强度基本保持不变. 该方法解决了水凝胶润滑材料与基底的结合问题,有望为医疗器械表面的润滑改性提供一种新思路.
Abstract:Reversible and convenient bonding underwater between hydrogel lubrication film and substrate is one of the challenges in the field of tribology. In this study, the lubrication film was combined with the silicone rubber to prepare hydrogel-lubricated silicone rubber with reversible wet adhesion. Polydimethylsiloxane (PDMS) with low degree of crosslink was used as an underwater adhesion material, and the initiator benzophenone was buried on its surface/subsurface, then the hydrogel lubricating film Poly (acrylic acid-co-acrylamide) [P(AA-co-AAm)] was grown on the surface through surface photopolymerization. The interface structure of obtained hydrogel-lubricated silicone rubber was explored by field emission scanning electron microscope (FESEM). The effects of ratio of hydrogel monomers, concentration of crosslinking agent, and polymerization time on performance of films were explored. The ratio of curing agent in PDMS was adjusted to explore its effects on adhesion and tribological properties of films. The results showed that a densely connected structure formed between the interface of hydrogel and PDMS. As the content of acrylic acid increased, the friction coefficient showed a trend of first decrease and then increase. When the content of acrylamide was further reduced, the acrylic acid segment absorbed water easily and swelled, leading to the reduction of mechanical strength and increase of friction coefficient. When the molar ratio of acrylic acid to acrylamide was 1:1, the hydrogel exhibited excellent tribological properties and mechanical strength. When the content of the crosslinking agent increased, the mechanical properties of hydrogel was optimized, and it exhibited better lubrication property. In addition, the modulus of PDMS increased as the content of curing agent, while the friction coefficient showed the opposite trend.; when the mass ratio of PDMS silane prepolymer to curing agent was 30:1, PDMS had favorable mechanical properties, adhesion performance and low friction coefficient. The prepared hydrogel-lubricated silicone rubber made the hydrogel adhesive underwater and endowed the silicone rubber with excellent lubrication and anti-wear properties. PDMS substrate was worn severely in the sliding direction after the friction test, its surface was damaged and there were obvious pits. In contrast, the hydrogel film only produced very slight scratches. The wear scar of the hydrogel was investigated, and the results showed that after nearly 3 000 cycles, the surface layer of the hydrogel film did not change much, which proved that the hydrogel film had excellent resistance to abrasiveness compared to PDMS. After repeated adhesion tests, the hydrogel film still had excellent adhesion properties. In addition, the hydrogel-lubricated silicone rubber had different adhesion on two sides. PDMS side showed good adhesion to titanium alloy, PTFE, and ceramics underwater while the hydrophilic hydrogel layer had no adhesion to titanium alloys, ceramics, etc. underwater, and directly falls off the surface of the materials.
-
Keywords:
- hydrogel /
- lubrication /
- in-situ growth /
- adhesive /
- surface modification
-
图 5 单体摩尔比例对水凝胶性能的影响:(a)拉伸性能;(b)压缩强度;(c)压缩模量,摩擦系数的影响因素:(d)单体比例;(e)交联剂浓度;(f)聚合时间
Figure 5. Effect of monomer molar ratio on hydrogel properties: (a) tensile properties; (b) compressive strength; (c) compression modulus. the effect factors of friction coefficient: (d) monomer ratio; (e) crosslinking agent concentration; (f) polymerization time
图 10 可黏附水凝胶润滑材料的黏附性能测试:(a)不同基底的黏附性能;(b)重复黏附性能,(c)可黏附水凝胶润滑硅橡胶双面黏附性,钛合金、PTFE、陶瓷的水下黏附情况:(d)水凝胶层;(e)黏附层
Figure 10. Adhesive properties test of adhesive hydrogel lubricating materials: (a) adhesive properties of different substrates; (b) repeated adhesion, (c) double-sided adhesion of adhesive hydrogel lubricated silicone rubber, underwater adhesion of titanium alloy, PTFE and ceramic: (d) hydrogel layer; (e) adhesive layer
-
[1] Hong S, Sycks D, Chan H F, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(27): 4035–4040. doi: 10.1002/adma.201501099
[2] Gao Yang, Jia Fei, Gao Guanghui. Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors[J]. Chemical Engineering Journal, 2019, 375: 121915. doi: 10.1016/j.cej.2019.121915
[3] Luo Jun, Yang Jiaojiao, Zheng Xiaoran, et al. A highly stretchable, real-time self-healable hydrogel adhesive matrix for tissue patches and flexible electronics[J]. Advanced Healthcare Materials, 2020, 9(4): 1901423. doi: 10.1002/adhm.201901423
[4] Duan Xiangyu, Yu Jingyi, Zhu Yaxun, et al. Large-scale spinning approach to engineering knittable hydrogel fiber for soft robots[J]. ACS Nano, 2020, 14(11): 14929–14938. doi: 10.1021/acsnano.0c04382
[5] Du Xinchen, Hou Yujie, Wu Le, et al. An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure[J]. Journal of Materials Chemistry B, 2020, 8(26): 5682–5693. doi: 10.1039/d0tb00640h
[6] Liao Meihong, Wan Pengbo, Wen Jiangru, et al. Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework[J]. Advanced Functional Materials, 2017, 27(48): 1703852. doi: 10.1002/adfm.201703852
[7] Lei Dai, Zhang Liqiang, Wang Baobin, et al. Multifunctional self-assembling hydrogel from guar gum[J]. Chemical Engineering Journal, 2017, 330: 1044–1051. doi: 10.1016/j.cej.2017.08.041
[8] 程慧茹, 张德坤, 沈艳秋, 等. 沉淀法制备PVA/HA复合水凝胶的摩擦性能研究[J]. 摩擦学学报, 2008, 28(5): 422–427 doi: 10.16078/j.tribology.2008.05.017 Cheng Huiru, Zhang Dekun, Shen Yanqiu, et al. Friction Properties of Poly (vinyl alcohol)/Hydroxylapatite Hydrogel Prepared by Compound in situ with Sol-gel Method[J]. Tribology, 2008, 28(5): 422–427 doi: 10.16078/j.tribology.2008.05.017
[9] 荣明明, 麻拴红, 蔡美荣, 等. 两亲性氧化石墨烯/聚(丙烯酸-甲基丙烯酸甲酯)复合水凝胶的制备及介质调控的摩擦学性能研究[J]. 摩擦学学报, 2018, 38(3): 309–318 doi: 10.16078/j.tribology.2018.03.008 Rong Mingming, Ma Shuanhong, Cai Meirong, et al. Preparation of amphipathic graphene oxide/poly(acrylic acid-methyl methacrylate) composite hydrogel and the study on its tribological property under media regulation[J]. Tribology, 2018, 38(3): 309–318 doi: 10.16078/j.tribology.2018.03.008
[10] 沈艳秋, 张德坤, 葛世荣. 聚乙烯醇/纳米羟基磷灰石复合水凝胶的接触变形与启动摩擦特性研究[J]. 摩擦学学报, 2008, 28(2): 97–102 doi: 10.16078/j.tribology.2008.02.017 Shen Yanqiu, Zhang Dekun, Ge Shirong. Contact deformation and friction performance of start-up for PVA/HA composite hydrogel[J]. Tribology, 2008, 28(2): 97–102 doi: 10.16078/j.tribology.2008.02.017
[11] Qu Minghai, Liu Hui, Yan Changyou, et al. Layered hydrogel with controllable surface dissociation for durable lubrication[J]. Chemistry of Materials, 2020, 32(18): 7805–7813. doi: 10.1021/acs.chemmater.0c02450
[12] Piers E M, Maria P, Jennifer L P, et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement[J]. Acta Biomaterialia, 2018, 65: 102–111. doi: 10.1016/j.actbio.2017.11.002
[13] Wang Jian, Zhang Xuewei, Zhang Shuang, et al. Semi-convertible hydrogel enabled photoresponsive lubrication[J]. Matter, 2021, 4(2): 675–687. doi: 10.1016/j.matt.2020.11.018
[14] Rao Ping, Sun Taolin, Chen Liang, et al. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(32): e1801884. doi: 10.1002/adma.201801884
[15] Lee B P, Messersmith P B, Israelachvili J N, et al. Mussel-inspired adhesives and coatings[J]. Annual Review of Materials Research, 2011, 41: 99–132. doi: 10.1146/annurev-matsci-062910-100429
[16] Han Lu, Wang Menghao, Prieto-López L O, et al. Self-hydrophobization in a dynamic hydrogel for creating nonspecific repeatable underwater adhesion[J]. Advanced Functional Materials, 2019, 30(7): 1907064. doi: 10.1002/adfm.201907064
[17] Han Lu, Lu Xiong, Liu Kezhi, et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization[J]. ACS Nano, 2017, 11(3): 2561–2574. doi: 10.1021/acsnano.6b05318
[18] Han Lu, Lu Xiong, Wang Menghao, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13(2): 1601916. doi: 10.1002/smll.201601916
[19] Yu Yan, Yuk H, Parada G A, et al. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes[J]. Advanced Materials, 2019, 31(7): 1807101. doi: 10.1002/adma.201807101
[20] Xu Rongnian, Zhang Yunlei, Ma Shuanhong, et al. A universal strategy for growing a tenacious hydrogel coating from a sticky initiation layer[J]. Advanced Materials, 2022, 34(11): 2108889. doi: 10.1002/adma.202108889
[21] Cui Chunyan, Wu Tengling, Chen Xinyu, et al. A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion[J]. Advanced Functional Materials, 2020, 30(49): 2005689. doi: 10.1002/adfm.202005689
[22] Feng Haiyan, Zhang Jianbin, Yang Wufang, et al. Transparent Janus hydrogel wet adhesive for underwater self-cleaning[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50505–50515. doi: 10.1021/acsami.1c12696
[23] Li Wei, Li Xiaofeng, Zhang Xintao, et al. Flexible Poly(vinyl alcohol)-Polyaniline Hydrogel Film with Vertically Aligned Channels for an Integrated and Self-Healable Supercapacitor[J]. ACS Applied Energy Materials, 2020, 3(9): 9408–9416. doi: 10.1021/acsaem.0c01794
[24] Wang Zhenxing, Wu Xiaochun, Dong Jiamei, et al. Porifera-inspired cost-effective and scalable “porous hydrogel sponge” for durable and highly efficient solar-driven desalination[J]. Chemical Engineering Journal, 2022, 427: 130905. doi: 10.1016/j.cej.2021.130905
[25] Jin Xuting, Song Li, Yang Hongsheng, et al. Stretchable supercapacitor at −30 °C[J]. Energy & Environmental Science, 2021, 14(5): 3075–3085. doi: 10.1039/D0EE04066E
[26] Wan Xizi, Gu Zhen, Zhang Feilong, et al. Asymmetric Janus adhesive tape prepared by interfacial hydrosilylation for wet/dry amphibious adhesion[J]. NPG Asia Materials, 2019, 11: 49. doi: 10.1038/s41427-019-0150-x
[27] Lin Shaoting, Yang Yueying, Ni Jiahua, et al. Stretchable anti-fogging tapes for diverse transparent materials[J]. Advanced Functional Materials, 2021, 31(36): 2103551. doi: 10.1002/adfm.202103551
[28] Yuk H, Zhang Teng, Parada G A, et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures[J]. Nature Communications, 2016, 7: 12028. doi: 10.1038/ncomms12028
[29] Zheng S Y, Yu H C, Yang C, et al. Fracture of tough and stiff metallosupramolecular hydrogels[J]. Materials Today Physics, 2020, 13: 100202. doi: 10.1016/j.mtphys.2020.100202
[30] Dai Lixin, Zhang Wei, Sun Lu, et al. Highly stretchable and compressible self-healing P(AA-co-AAm)/CoCl2 hydrogel electrolyte for flexible supercapacitors[J]. ChemElectroChem, 2019, 6(2): 467–472. doi: 10.1002/celc.201801281
[31] Deng Lin, Wang Chunhao, Li Zichen, et al. Re-examination of the “zipper effect” in hydrogen-bonding complexes[J]. Macromolecules, 2010, 43(6): 3004–3010. doi: 10.1021/ma902601d
[32] Li Ting xi, Kong Na, Wu Sha sha, et al. Synthesis and performance of super absorbent resin with acrylic acid-acrylamide[J]. Materials Science Forum, 2011, 687: 523–527. doi: 10.4028/www.scientific.net/msf.687.523
[33] Wen Hai bo, Gao Xin, Zhang Heng, et al. Water absorbency study of the low-cost composite: Eupatorium adenophorum-graft-acrylic acid/acrylamide[J]. Advanced Materials Research, 2013, 634–638: 2098–2105.
[34] Wang Zhongnan, Li Jinjin, Liu Yuhong, et al. Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water[J]. Materials & Design, 2020, 188: 108441. doi: 10.1016/j.matdes.2019.108441
[35] Lai Shuili, Han Wujun, Yuan Dan. Synthesis of P(AA-AM)/attapulgite clay SAR under microwave irradiation[J]. Journal of Macromolecular Science, Part A, 2010, 48(1): 31–36. doi: 10.1080/10601325.2011.528304
[36] Zhan Xiaoyuan, Wang Fang, Li Xingwei, et al. Synthesis of montmorillonite/acrylic acid/acrylamide tricopolymer and its super absorbent properties[J]. Polymers and Polymer Composites, 2014, 22(5): 489–494. doi: 10.1177/096739111402200510
[37] Gao Luyao, Zhao Xiaoduo, Ma Shuanhong, et al. Constructing a biomimetic robust bi-layered hydrophilic lubrication coating on surface of silicone elastomer[J]. Friction, 2022, 10(7): 1046–1060. doi: 10.1007/s40544-021-0513-5
[38] Rong Mingming, Liu Hui, Scaraggi M, et al. High lubricity meets load capacity: cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface[J]. Advanced Functional Materials, 2020, 30(39): 2004062. doi: 10.1002/adfm.202004062
[39] 张有忱, 鲍磊. PAMPS-PAAM互穿网络凝胶的摩擦性能研究[J]. 摩擦学学报, 2012, 32(4): 396–401 doi: 10.16078/j.tribology.2012.04.010 Zhang Youchen, Bao Lei. Tribological properties of PAMPS-PAAM interpenetrating polymer network hydrogel[J]. Tribology, 2012, 32(4): 396–401 doi: 10.16078/j.tribology.2012.04.010
[40] Sealy C. Universal adhesive works under water[J]. Materials Today, 2018, 21(10): 1001. doi: 10.1016/j.mattod.2018.10.020
-
期刊类型引用(2)
1. 汤洁,张丽慧,周春宇,吴杨,于波,周峰. 橡胶减摩抗磨改性研究进展. 摩擦学学报(中英文). 2024(03): 379-395 . 百度学术
2. 范琳,王永强,陈强,刘骁,郭平霞,杨淑燕,蔡美荣,白艳艳,周峰. 弹流润滑状态下热可逆超分子凝胶润滑剂成膜机制的研究. 摩擦学学报(中英文). 2024(05): 585-596 . 百度学术
其他类型引用(0)