Modeling and Experimental Study of Friction Force between Orthodontic Archwire and Bracket
-
摘要: 正畸矫治过程中,正畸弓丝与托槽间的相对滑动趋势将产生摩擦力,进而降低有效矫治力,影响矫治的性能和效率. 针对目前正畸摩擦力预测方法量化预测精度低的问题,依据正畸弓丝与托槽间的几何关系、力学关系及物理参数,提出一种基于分力叠加原理的计及接触角度的正畸摩擦力预测模型建立方法. 探究影响正畸摩擦力的主要因素以及变化规律,提出采用有限滑动法测量正畸摩擦力,搭建了基于六维力传感器的正畸摩擦力测量系统,进行了不同弓丝-托槽组合和不同接触角度的摩擦力测量,试验数据与预测模型的理论数据间误差率处于0.55%~9.65%之间,证明该预测模型可为医师明确正畸矫治器参数-摩擦力-矫治力的关系提供理论依据,为实现数字化正畸提供理论支撑,保证个性化正畸方案的高效、高可靠性和高舒适度,最终达到轻力矫治的效果.Abstract: In the process of orthodontic treatment, the relative sliding trend between the archwire and bracket produces friction force, which reduces the effective force and affects the performance and efficiency of the treatment. The current orthodontic friction force prediction method fails to comprehensively consider the geometrical relationship, mechanical relationship and physical parameters between the archwire and the bracket, which is difficult to provide accurate and reliable prediction for doctors. This paper aims to provide a high-precision quantitative prediction method, and investigate the main factors affecting the orthodontic friction and its changing principle. In view of the mechanical factors affecting orthodontic friction, the orthodontic friction is divided into three contact components according to the relative contact between the archwire and the bracket. A modeling method of orthodontic friction force prediction taking into account the contact angle was proposed based on principle of component force superposition. Taking the three adjacent brackets as an example, the geometrical relationship, mechanical relationship and physical parameters between the archwire and the bracket were analyzed. Firstly, the contact angle was calculated. Secondly, the constraint force was modeled based on the beam deformation theory, the classical friction was modeled based on the first friction theory, and the notching resistance was modeled based on the mechanical relationship. Finally, the orthodontic friction force in the two contact cases was obtained, which were bilateral contact and unilateral contact between the archwire and the bracket groove. In the experiment, the finite sliding method was used to measure the orthodontic friction force, and an orthodontic simulation dentition with three brackets was designed. A six-dimensional force sensor-based orthodontic friction force measurement system was built to measure friction force at a constant ligature pressure, constant sliding speed and within a limited sliding stroke of 3 mm. The friction prediction models for the two contact cases were validated by friction measurements with different archwire-bracket combinations and four sets of contact angles (0°, 3°, 6°, and 9°), respectively. The deviation rate between the experimental data and the theoretical data of the prediction model was in the range of 0.55%~9.65%. In the case of bilateral contact, orthodontic friction was negatively correlated with the width of bracket groove, and positively correlated with the cross-sectional size of archwire. The width of bracket groove affected the friction to a greater extent than the cross-sectional size of archwire. In addition, orthodontic friction was more sensitive to changes in cross-sectional size for round archwire and to changes in bracket groove width for rectangular archwire. With constant archwire-bracket parameters, orthodontic friction was positively correlated with contact angle, and as contact angle increased, friction increased more rapidly with the stainless steel round archwire than with the stainless steel rectangular archwire. When combined with the same bracket, the friction generated by a round archwire with small cross-sectional area reached or even exceeded that of a rectangular archwire with a larger cross-sectional area under the condition of bracket restraint. The friction between the domestic stainless steel round archwire and the bracket was higher than the friction between the Australian round archwire and the bracket under the same conditions. The prediction model can provide a theoretical basis for the physician to clarify the relationship between orthodontic appliance parameters-friction force-orthodontic force. In the future, the model can be used to establish an orthodontic friction prediction system to accurately predict individualized orthodontic tribological behavior by means of theoretical calculations and simulations, thus aiding digital orthodontic treatment and achieving light orthodontic treatment. Biological factors will be further taken into account in the prediction model to simulate the real environment in the mouth as much as possible.
-
根据世界卫生组织的研究,错颌畸形是口腔三大疾病之一. 全球儿童和青少年错颌畸形患病率为56%,主要是由牙位不正确引起的[1-2],它的发生将影响咀嚼和发音,容易引发龋齿、牙周炎和呼吸道疾病等[3]. 最有效和成熟的治疗方法是正畸矫治,如图1所示,金属托槽预先粘贴于牙齿表面,托槽相对于牙齿是固定的,利用结扎丝将托槽与弓丝捆扎,正畸矫治是通过正畸弓丝形变产生有效矫治力带动托槽及牙齿产生生理性移动[4-5],但结扎丝不能完全保证二者的相对固定,托槽将沿着弓丝形变的方向产生相对滑动或滑动趋势,进而在接触面产生正畸摩擦力[6-8]. 研究显示临床上50%~60%的正畸力要用来克服正畸过程中产生的摩擦力,矫治力必须克服摩擦力,并且不损伤牙齿和周围组织的健康,进而获得牙齿与周围组织的力学平衡,才能使牙齿产生生理性的移动[8-9]. 因此,了解正畸治疗过程中产生的摩擦力的强度是促进牙齿最佳生物运动的关键[10].
近年来,轻力矫治和数字化正畸的理念越来越受到正畸医生的关注[11-12],大量学者对正畸摩擦力展开研究. Razali和Gómez-Gómez等[13-15]采用有限元法探究了正畸摩擦力在正畸过程中的影响. Tiziano Baccetti等[16]通过试验表明,低摩擦系统有助于释放较大的正畸力,保证正畸过程中牙齿移动效率. 许多研究学者利用特定测量装置及测量方法,通过试验分别测得不同干湿条件、不同正畸弓丝-托槽组合及不同结扎程度等情况下弓丝与托槽间的正畸摩擦力,致力于探究正畸摩擦力的主要影响因素及变化规律,并寻求使得正畸摩擦力最小的弓丝-托槽组合及接触方式[17-24]. 但这种方式大都需要多组且大量重复试验,对比分析后才能得到最佳的组合方案,且在不同的环境中所得到的数据具有差异性,不能为正畸医师提供统一化的标准方法,很难确切地控制摩擦力大小. 因此亟需建立正畸摩擦力的预测模型,通过计算来精准预测正畸摩擦力. 周珊等[25]根据摩擦力测量试验结果推算出正畸摩擦力预测公式,正畸摩擦力预测公式能够粗略推测出正畸矫治力需要克服的正畸摩擦力大小,但未能考虑正畸弓丝与托槽间的几何关系、力学关系及物理参数对预测模型的影响;Yukio Kojima等[26]建立了牙齿正畸滑动力学模型,根据弓丝与托槽间的力学关系,以分力叠加的方式量化正畸摩擦力,但一般弓丝与托槽之间存在微小的接触角,即牙齿在矫正滑动时引起的倾斜槽沟与参与矫正的弓丝之间接触而形成角度,该研究未能考虑接触角度对摩擦力的影响.
综上所述,目前现有的正畸摩擦力预测模型未能全面考虑弓丝托槽间受力关系和弓丝托槽的物理参数等因素,缺乏标准的参数化表达机制,因此不能保证模型预测的精确度和通用性. 针对以上问题,依据正畸弓丝与托槽间的几何关系及力学关系,考虑正畸弓丝-托槽间接触特点及多物理参数,提出一种基于分力叠加法的正畸摩擦力预测模型建立方法,根据弓丝在托槽内的滑动机制,搭建基于六维力传感器的正畸摩擦力测量系统,进行不同弓丝-托槽组合和不同接触角度下的摩擦力测量及分析,以证明所建立的正畸摩擦力预测模型的有效性.
1. 正畸摩擦力分析及预测模型建立
1.1 正畸摩擦力影响因素及力学基础
正畸矫治器由托槽和弓丝组成,托槽粘贴于待矫治的牙齿上,正畸医师根据临床矫治需求将弓丝弯制成特定形状,用以产生矫治畸形牙齿所需要的正畸矫治力,然后将弯制好的弓丝放入托槽内并用结扎丝进行固定,以便对弓丝位置及姿态进行限定[5,8]. 弓丝需要通过托槽才能将矫治力作用于牙齿本身,弓丝与托槽必然会接触,当弓丝与托槽间发生相对位移或者有相对位移的趋势时,就会产生正畸摩擦力,其大小与弓丝运动方向相反,在正畸矫治过程中,正畸力需要克服12%~60%的正畸摩擦力才能作用到牙齿上[8],若摩擦力增大,矫治器的有效性将降低,治疗时间延长. 另外,摩擦阻力对作用于牙齿的力矩/力也产生影响,继而影响牙齿的旋转中心,出现牙齿无法移动和牙根吸收等并发症,临床矫治的周期会被严重延长.
影响正畸摩擦力的因素分为两大类:机械因素和生物因素[8,19]. 由于生物因素针对不同人群的个性化差异大,且生物参数很难定量评估,因此在本研究中致力于探究机械因素对正畸摩擦力的影响. 如图2所示,机械因素主要为弓丝材料、截面形状和尺寸、托槽材料及宽度、槽沟宽度、弓丝与托槽的表面粗糙度、弓丝与托槽的接触角度以及结扎方法和松紧度等.
弓丝、托槽和结扎丝是影响正畸摩擦力的3个主要装置,利用结扎丝将弓丝固定在托槽槽沟内,在弓丝与托槽槽沟底面间产生垂直于托槽基底方向的压力,当弓丝形变时生成正畸力F,同时在弓丝与托槽间产生摩擦力
Ff . 通常,根据弓丝与托槽的相对接触情况可知正畸摩擦力由三种接触分力组成,作用原理如图3所示. 弓丝与托槽表面接触摩擦力称为经典摩擦力Ff ;由于牙齿倾斜或弓丝弯曲导致弓丝与托槽槽沟之间的倾斜达到一定的角度时,弓丝与托槽壁接触而产生阻力称为约束力FB;当托槽与弓丝之间的成角增大使得弓丝发生永久变形时,弓丝与槽沟之间产生的阻力称为刻痕阻力FS [27].1.2 正畸摩擦力预测模型建立
通过对正畸摩擦力原理分析可知,在正畸矫治过程中,依据正畸弓丝与托槽间接触角大小,正畸摩擦力三种接触分力可能阶段性地存在或同时存在,因此提出基于分力叠加原理的计及接触角
θc 的正畸摩擦力预测模型建立方法,避免了传统正畸弓丝与托槽间摩擦力预测模型中对于正畸弓丝与第i个托槽间的接触角θc 的忽略而造成预测模型的精度损失. 在摩擦力建模过程中先对接触角θc 进行分析,然后依次对约束力FB、经典摩擦力Ff 和刻痕阻力FS 进行建模,最终总摩擦力FR 为三者之和.如图4所示,以上牙列为例,首先考虑当弓丝与托槽槽沟上下壁两侧同时接触时,通过对弓丝及托槽参数分析及受力分析可以得到,正畸弓丝与第i个托槽间的接触角
θic 为θic=arctan(bi−DWi) (1) 式中i表示托槽的个数,每个托槽对应所在牙列上的1颗牙齿(正常人牙列为14颗牙齿),i=1、2、....14,
bi 为第i个托槽槽沟间隙宽度,Wi 为第i个托槽作用在接触段弓丝的宽度,D为弓丝横截面直径.对于处于正畸移动过程中的正畸弓丝与托槽之间的接触作用,牙齿倾斜和正畸弓丝弯曲导致正畸弓丝与托槽槽沟之间形成倾斜角,则正畸弓丝与第i个托槽上下壁的两边同时接触产生约束力
FiB ,正畸弓丝与第i个托槽间约束力FiB 是由正畸弓丝与第i个托槽下壁直接接触产生的正压力Fip1 和第i个托槽内正畸弓丝弯曲变形产生的力Fip2 矢量和相加求得:FiBcos(θi−θic)=μi(Fip1+Fip2) (2) 式中
θi 是在约束力FiB 方向上与第i个托槽间的夹角,FiBcosθi 是平行于正畸弓丝表面的FiB 分量,μi 是正畸弓丝与第i个托槽间的动摩擦系数,并且Fip1=FiBsin(θi−θic) (3) 任意两个相邻托槽间的正畸弓丝的挠曲线方程表达为
M(x)=EId2ydx2 (4) 式中
M(x) 为任意两个相邻托槽间的弓丝在点x处的弯矩,E为杨氏模量,I为面积惯性矩,对于圆丝Iz=πD464 ,D为圆丝直径,对于方丝Iz=πc1c264, c2为矩形丝截面上平行于沟槽表面一边的长度,c1为矩形丝截面上垂直于沟槽表面一边的长度.如图5所示,A点为第i个托槽上壁右端与正畸弓丝的接触点,即力矩分析过程中,A点所在托槽位置作为固定铰支座,B点为第i+1个托槽左端边线与正畸弓丝的交点,即B点所在托槽位置为滑移支座;C点为A点到弓丝中点间的任意一点,D点为弓丝中点到B点间的任意一点. A点所在托槽上下两接触点将朝着接触处弓丝的切线方向移动,托槽中心将沿着弓丝的施力方向移动,除此之外,中心还将产生逆时针的转动;同样B点所在托槽中心及上下壁端点将朝着弓丝的施力方向移动. 第i个托槽与第i+1个托槽之间正畸弓丝的长度为
Si ,即AB间的弓丝段长度,i=14表示图4中上牙列最后1个托槽,根据临床经验,此托槽主要起到固定弓丝末端和颌内及颌间牵引作用,其受力情况不定,因此暂不对该托槽进行摩擦力的研究,为保证定义的完整性,特殊地,S14=0 . 两托槽间水平间距近似为Si=SiBT−12(Wi+Wi+1) ,SiBT 是第i个牙齿的托槽底边中点到第i+1个相邻牙齿的托槽底边中点的距离.如图6所示,第i个托槽和第i+1个托槽之间的正畸弓丝中的
0⩽ 里任意一点C的力矩平衡表达式为\sum {{M_{{C}}} = {M_1}} \left( x \right) - \frac{{{A_y}}}{2}x + {M_{{A}}} = 0 (5) 式中:
{A_y} 是点A处y方向的反作用力,{M_{{A}}} 是点A处的反作用力矩,{M_1}\left( x \right) 是第i个托槽和第i+1个托槽之间的正畸弓丝中的0 \leqslant x \leqslant \dfrac{{{S_i}}}{2} 里任意一点C的力矩,点C的横坐标为x .对于第i个托槽和第i+1个托槽之间的正畸弓丝的其余部分,即
\displaystyle\frac{{{S_i}}}{2}\leqslant x\leqslant {S_i} 部分的正畸弓丝,任意一点D的力矩的平衡表达式为\sum {{M_{{D}}}} = {M_2}\left( x \right) - {A_y}x + {M_{{A}}} + {M_{{\theta _i}}} = 0 (6) 式中,
{M_2}\left( x \right) 是第i个托槽和第i+1个托槽之间的正畸弓丝上的\dfrac{{{S_i}}}{2}\leqslant x\leqslant {S_i} 之间任意一点D处的力矩,{M_{{\theta _i}}} 为第i个托槽和第i+1个托槽之间的正畸弓丝发生偏转时所产生力矩.x处弯矩表示为
{M_2}\left( x \right) = {A_y}x - {M_{{A}}} - {M_{{\theta _i}}} (7) 使用奇异函数,得到方程:
{M_2}\left( x \right) = {A_y}x - {M_{{A}}} - {M_{{\theta _i}}}{\left( {x - \frac{{{S_i}}}{2}} \right)^0} (8) 第i个托槽和第i+1个托槽之间的正畸弓丝的刚度EI是恒定的,将(7)代入方程(4)表示为
EI\theta \left( x \right) = \frac{{{A_y}{x^2}}}{2} - {M_{{A}}}x - \left[ {{M_{{\theta _i}}}{{\left( {x - \frac{{{S_i}}}{2}} \right)}^0}} \right] (9) 对x做两次积分,得到转角方程
\theta (x) = \dfrac{{{\rm{d}}u(x)}}{{{\rm{d}}x}} 和挠度方程u(x) 的关系,分别为EI\theta \left( x \right) = \frac{{{A_y}{x^2}}}{2} - {M_{{A}}}x - {M_{{\theta _i}}}\left( {x - \frac{{{S_i}}}{2}} \right) + {C_1} (10) EIu\left( x \right) = \frac{{{A_y}{x^3}}}{6} - \frac{{{M_{{A}}}{x^2}}}{2} - \dfrac{{{M_{{\theta _i}}}{{\left( {x - \dfrac{{{S_i}}}{2}} \right)}^2}}}{2} + {C_1}x + {C_2} (11) 通过使用边界条件
{\left. {\theta \left( x \right)} \right|_{x =0}}=0 ,{\left. {u\left( x \right)} \right|_{x = 0}}=0 来确定方程(11)中的积分常数,计算得出{C_1}={C_2}=0 ;通过使用{\left. {\theta \left( x \right)} \right|_{x = {S_i}}}=0 ,{\left. {u\left( x \right)} \right|_{x = {S_i}}} = 0 边界条件确定方程(11)中的第i个托槽和第i+1个托槽之间的正畸弓丝在x = 0 处的支反力{A_y} :{A_y} = \frac{{3{M_{{A}}}}}{{{S_i}}} + \frac{{3{M_{{\theta _i}}}}}{{8{S_i}}} (12) 将(12)代入(8),通过使用边界条件
{\left. {\theta \left( x \right)} \right|_{x = {S_i}}} = 0 ,{\left. {u\left( x \right)} \right|_{x = {S_i}}} = 0 进行求解得到:{M_{{A}}} = \frac{{{M_{{\theta _i}}}}}{4} (13) 因此,第i个托槽和第i+1个托槽之间的正畸弓丝的转角方程和挠度方程表达式为
EI\theta \left( x \right) = {M_{{\theta _i}}}\frac{{3{x^2} - {S_i}x - 4{S_i}\left( {x - \dfrac{{{S_i}}}{2}} \right)}}{{4{S_i}}} (14) EIu\left( x \right) = {M_{{\theta _i}}}\frac{{2{x^3} - {S_i}{x^2} - 4{S_i}{{\left( {x - \displaystyle\frac{{{S_i}}}{2}} \right)}^2}}}{{8{S_i}}} (15) 由于第i个托槽和第i+1个托槽之间的正畸弓丝发生偏转时所产生力矩
{M_{{\theta _i}}} 是由第i个托槽内正畸弓丝弯曲变形产生的力F_{{\text{p2}}}^i 与{M_{{\theta _i}}} 的力矩臂L相乘所得,力矩臂L的长度为L = \displaystyle\frac{{{W_i}}}{{\cos \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}} ,并且在第i个托槽和第i+1个托槽之间的正畸弓丝的中点\dfrac{{{S_i}}}{2} 处的转角\theta \left( x \right) 为角度{\theta _i} - \theta _{\text{c}}^i 的正切值,通过(14)可以求解第i个托槽内正畸弓丝弯曲变形产生的力F_{{\text{p2}}}^i :{M_{{\theta _i}}} = F_{{\text{p}}2}^iL = F_{{\text{p}}2}^i\frac{{{W_i}}}{{\cos \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}} (16) 则
\begin{split} EI\tan \left( {{\theta _i} - \theta _{\text{c}}^i} \right) = & {M_{{\theta _i}}}\frac{{{\raise0.7ex\hbox{${3{S_i}^2}$} \mathord{\left/ {\vphantom {{3{S_i}^2} 4}}\right.} \lower0.7ex\hbox{$4$}} - {\raise0.7ex\hbox{${{S_i}^2}$} \mathord{\left/ {\vphantom {{{S_i}^2} 2}}\right.} \lower0.7ex\hbox{$2$}} - 4{S_i}\left( {{\raise0.7ex\hbox{${{S_i}}$} \mathord{\left/ {\vphantom {{{S_i}} 2}}\right.} \lower0.7ex\hbox{$2$}} - {\raise0.7ex\hbox{${{S_i}}$} \mathord{\left/ {\vphantom {{{S_i}} 2}}\right.} \lower0.7ex\hbox{$2$}}} \right)}}{{4{S_i}}} \\ = & F_{{\text{p2}}}^i\frac{{{S_i}{W_i}}}{{16\cos \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}} \\[-15pt] \end{split} (17) 可以得到:
F_{{\text{p2}}}^i = \frac{{16EI\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}}{{{S_i}{W_i}}} (18) 因此,正畸弓丝与第i个托槽下壁直接接触产生的正压力
F_{{\text{p1}}}^i 和第i个托槽内正畸弓丝弯曲变形产生的力F_{{\text{p2}}}^i 分别相加得到正畸弓丝与第i个托槽间约束力F_{{\rm B}}^i 作用于托槽上的反力{N_{F_{{\rm B}}^i}} :{N_{F_{{\rm B}}^i}} = F_{{\text{p1}}}^i + F_{{\text{p2}}}^i = \sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)\left( {\frac{{16EI}}{{{S_i}{W_i}}} + F_{{\rm B}}^i} \right) (19) 将(19)代入(2),可以得出正畸弓丝与第i个托槽间约束力
F_{\rm B}^i 的表达式为F_{{\rm B}}^i = \frac{{16\mu EI\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}}{{{S_i}{W_i}\left[ {1 - {\mu ^i}\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)} \right]}} (20) 当弓丝与托槽表面接触时会产生经典摩擦力
F_{\text{f}}^i ,在进行第i个托槽间经典摩擦力F_{\text{f}}^i 建模时,考虑到两种产生经典摩擦力的方式:首先,正畸弓丝通过结扎丝固定在第i个托槽槽沟内,弓丝与托槽槽沟表面接触,并且受到结扎丝施加的法向压力
F_{\text{N}}^i ,F_{\text{N}}^i 作为已知量可利用结扎丝与弓丝间加力方式确定. 此时会产生法向摩擦力F_{{\text{Nf}}}^i ,根据第一摩擦理论,可知:F_{{\text{Nf}}}^i = {\mu ^i}F_{\text{N}}^i (21) 其次,弓丝置于托槽内时与托槽上下壁接触,弓丝与第i个托槽下壁直接接触产生的正压力
F_{{\text{p1}}}^i ,由滑动摩擦力计算公式得出正畸弓丝与第i个托槽间滑动摩擦力F_{{\text{Pf}}}^i 预测模型的表达式为:F_{{\text{Pf}}}^i = {\mu ^i}F_{{\text{p1}}}^i = {\mu ^i}F_{{\rm B}}^i\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right) (22) 第i个托槽间经典摩擦力
F_{\text{f}}^i 应为法向摩擦力F_{{\text{Nf}}}^i 与滑动摩擦力F_{{\text{Pf}}}^i 之和F_{\text{f}}^i = F_{{\text{Nf}}}^i + F_{{\text{Pf}}}^i = {\mu ^i}F_{\text{N}}^i + {\mu ^i}F_{{\rm B}}^i\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right) (23) 当托槽与弓丝之间形成的倾斜角增大使得弓丝发生永久变形时,弓丝与第i个槽沟之间产生的阻力称为刻痕阻力
F_{\text{S}}^i ,刻痕阻力F_{\text{S}}^i 由与第i个托槽接触的正畸弓丝弯曲变形产生的力F_{{\text{p2}}}^i 求得:F_{\text{S}}^i\cos \theta _{\text{c}}^i = {\mu ^i}F_{{\text{p2}}}^i (24) 式中
F_{\text{S}}^i\cos \theta _{\text{c}}^i 是平行于第i个托槽槽沟方向的F_{\text{S}}^i 分量.根据式(24)和(18)可知弓丝与第i个槽沟之间产生的阻力称为刻痕阻力
F_{\text{S}}^i 的表达模型为F_{\text{S}}^i = \frac{{{\mu ^i}F_{{\text{p2}}}^i}}{{\cos \theta _{\text{c}}^i}} = \frac{{16{\mu ^i}EI\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}}{{{S_i}{W_i}\cos \theta _{\text{c}}^i}} (25) 正畸弓丝同第i个托槽间的总摩擦力
F_{\text{R}}^i 由正畸弓丝与第i个托槽间滑动摩擦力F_{\text{f}}^i 、正畸弓丝与第i个托槽间约束力F_{{\rm B}}^i 和正畸弓丝与第i个托槽间刻痕阻力F_{\text{S}}^i 叠加而成,因此正畸弓丝与托槽间总摩擦力F_{\text{R}}^i 表示为F_{\text{R}}^i =F_{{\rm B}}^i + F_{\text{f}}^i + F_{\text{S}}^i (26) 即
\begin{split} F_{\text{R}}^i = & \frac{{16{\mu ^i}EI\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}}{{{S_i}{W_i}\left[ {1 - {\mu ^i}\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)} \right]}} +\\ & {\mu ^i}F_{\text{N}}^i + F_{{\rm B}}^i\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right) +\frac{{16{\mu ^i}EI\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}}{{{S_i}{W_i}\cos \theta _{\text{c}}^i}} \end{split} (27) 当弓丝与托槽槽沟单侧壁面接触时,接触角度
\theta _{\text{c}}^i 可直接测得,此时刻痕阻力F_{\text{S}}^i=0 ,即在使用式(27)时可不考虑F_{\text{S}}^i ,可得F_{\text{R}}^i = \frac{{16{\mu ^i}EI\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)}}{{{S_i}{W_i}\left[ {1 - {\mu ^i}\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right)} \right]}} + {\mu ^i}F_{\text{N}}^i + {\mu ^i}F_{{\rm B}}^i\sin \left( {{\theta _i} - \theta _{\text{c}}^i} \right) (28) 2. 正畸摩擦力测量试验
2.1 试验材料
本研究中主要探究弓丝截面形状尺寸及材料、托槽尺寸及槽沟宽度和弓丝与托槽间接触角度为影响正畸摩擦力的主要因素,所以应采用不同的托槽与弓丝组合和不同的接触角度进行测量. 试验中使用的不锈钢正畸弓丝由中国仁云医疗器械公司制造,澳丝正畸弓丝由美国A J Wilcock公司制造,结扎丝采用杭州奥索医疗器械有限公司生产的直径为0.25 mm的不锈钢结扎丝. 为了探究不同弓丝与托槽组合对正畸摩擦力的影响,摩擦力测量试验采用包括两种材料和两种截面形状的10组不同的弓丝与三种不同槽沟尺寸的托槽组合测量,弓丝代号分别为I-S1616、Ⅱ-S1622、Ⅲ-S1625、Ⅳ-S0014、Ⅴ-S0016、Ⅵ-S0018、Ⅶ-S0020、Ⅷ-A0016、Ⅸ-A0018和Ⅹ-A0020. 托槽代号为:T35、T40和T45. 上述的弓丝代号命名规则为S表示不锈钢弓丝,A表示澳丝,后面四位数字为弓丝截面尺寸,代号00加弓丝直径表示的是圆丝截面尺寸,例如S1622表示不锈钢方丝,截面尺寸为0.406 4 mm×0.558 8 mm;A0016表示澳丝,截面直径为0.558 8 mm[5-6]. 托槽代号规则如下:T表示传统托槽,后面两位数字表示托槽槽沟宽度,单位为英寸,例如:T35表示槽沟宽度为b=0.889 mm的国产传统托槽. 作用在接触段弓丝的托槽宽度
{W_i} 对于不同牙齿的托槽略微差异,考虑到制造误差,因此可通过游标卡尺实测. 针对本研究中采用的国产不锈钢弓丝和澳丝,同种材料已采用哈尔滨工业大学5569电子万能材料试验机[28]通过单轴拉伸试验获得弹性模量E,国产不锈钢弓丝:E=8.52×104 MPa;澳丝弓丝:E=7.49×104 MPa,与不锈钢托槽间摩擦系数分别为0.15和0.12. 对于圆丝{I_{\text{z}}} = \dfrac{{{\text{π }}{{{D}}^4}}}{{64}} ,对于方丝{I_{\text{z}}} = \dfrac{{{c_1}c_2^3}}{{12}} 。2.2 测量系统搭建
通过分析正畸摩擦力的产生机理可知,由于弓丝与托槽之间相互接触且弓丝不断形变,在矫治过程中出现相对滑动现象或产生相对滑动的趋势,因此在二者之间会产生摩擦力. 所以基于弓丝与托槽间的滑动机制,采用有限滑动法对正畸摩擦力进行测量. 如图7所示,测量系统主要包括:正畸矫治器(弓丝、结扎丝及上牙列相邻3个托槽)、万向夹持器、模拟牙列、牙列支撑平台、电机控制器、弓丝拉动滑台、六维力传感器、力采集器、游标卡尺和电子角度测量仪. 试验中使用的传感器为合肥旭宁科技公司生产的六维力传感器,其量程为20 N,单通道最大采样频率为5 000 Hz,分辨率为0.01 N. 模拟牙列以铜柱作为模拟牙齿,为了实现弓丝良好的拉动顺畅性且又能合理安置力传感器,模拟牙齿安装在模拟牙列槽沟曲率较小的端部位置,并通过100 g砝码施加约为1 N的结扎压力. 力传感器与活动模拟牙齿固接,活动模拟牙齿底端悬空,中间托槽粘接于活动模拟牙齿上,相邻两侧托槽粘接于固定模拟牙齿上且上下边与模拟牙列安装面平行,从而可以使得弓丝段的变形较小,易于测量所需的
{\theta _i} 值. 每次试验前通过游标卡尺测量,调整牙齿位置使得待测托槽S_{{\text{BT}}}^i=13{\text{ mm}} .在进行不同弓丝和托槽组合正畸摩擦力试验时,经过多次测试观察中间托槽底边与水平线间倾斜角度为10°(以划线方式预先标记),微调中间托槽位置可确保弓丝与托槽槽沟上下壁面同时接触,然后验证公式(27),测量十组弓丝与不同托槽组合情况下正畸摩擦力的数值. 在进行不同接触角度下正畸摩擦力测量试验时,统一采用T40托槽,粘贴时中间托槽与相邻托槽上下边平行,经过计算该托槽与试验所用弓丝的理论最大接触角不超过9°,因此设定四组接触角度值,即0°、3°、6°和9°,可以仅考虑弓丝与托槽槽沟单侧壁面接触,验证公式(28). 通过改变两侧模拟牙齿上螺柱高度并微调万向夹持器,可以改变中间托槽与弓丝的接触角,测量十组弓丝在该四组接触角度情况下正畸摩擦力的数值.
在测量时将模拟牙列固定于牙列支撑平台,根据试验要求可上下调节牙列支撑平台,保证弓丝在抽丝端水平附近,用95%乙醇棉球对托槽和弓丝进行脱脂处理,以消除各类附着物对试验结果造成的影响. 由于所建立的正畸摩擦力预测模型未考虑生物因素,因此试验在干态环境室温(24±2 ℃)下进行. 采用电子角度测量仪确定或保证每次试验涉及到的角度值,将弓丝抽丝端用夹紧枪头夹紧,启动电机驱动滑台使弓丝沿抽丝端延长线方向平稳拉动,考虑到临床正畸过程中牙齿移动速度,为了更加真实模拟弓丝在托槽间滑动情况,弓丝的拉动速度应尽量降低,根据试验研究[29]可知,正畸弓丝的滑动速度处于5.0×10−7~1.0×10−1 mm/s时,由于滑动速度变化对正畸摩擦力影响程度较小,因此设置滑台移动速度为0.1 mm/s,并在有限的滑动行程3 mm内进行测定,即可模拟正畸治疗的条件[30]. 通过力采集器获得Z轴力数据即为摩擦力数值.
2.3 结果及讨论
利用正畸摩擦力测量装置对正畸摩擦力进行测量,为了保证所获得的测试结果具有可靠性和通用性,对同种代号弓丝的测量试验取多组样本,接触角度的测量误差在0.1°以内认为是有效样本,每组试验使用同一根弓丝截取相同长度的3段进行3次重复试验,取数值稳定状态下力的最大值,对测得的3个正畸摩擦力取算数平均值作为该次试验对应的有效测量值.
2.3.1 不同弓丝和托槽组合试验
不同弓丝和托槽组合下正畸摩擦力的试验结果及理论结果如图8所示. 在测定不同托槽和弓丝组合摩擦力时,始终存在一定接触角度,代号T35、T40和T45所代表的国内传统托槽槽沟宽度依次增大. 图8(a)、8(b)和8(c)中对正畸摩擦力试验值和预测模型计算所得理论值进行了对比. 代号Ⅰ、Ⅱ和Ⅲ的不锈钢方丝,如图8(a)所示,根据试验结果对比曲线可知,相同截面尺寸的方丝与托槽间的正畸摩擦力随托槽槽沟宽度增大而减小,相同托槽配合的方丝与托槽间正畸摩擦力随截面尺寸(截面积)的增大而增大,如图8(d)所示,试验值与理论值的误差率处于1.35%~7.35%以内;代号Ⅳ、Ⅴ、Ⅵ和Ⅶ的不锈钢圆丝,代号Ⅷ、Ⅸ和Ⅹ的澳丝圆丝,如图8(b)和图8(c)所示,根据试验结果对比曲线可知,相同截面直径的圆丝与托槽间的正畸摩擦力随托槽槽沟宽度增大而减小,相同托槽配合的圆丝与托槽间正畸摩擦力随截面直径的增大而增大,如图8(d)所示,对于不锈钢圆丝,试验值与理论值的误差率处于1.70%~9.75%以内,对于澳丝圆丝,试验值与理论值的误差率均处于2.10%~8.65%以内.
综合分析代号Ⅴ、Ⅵ、Ⅶ的不锈钢圆丝和代号Ⅷ、Ⅸ、Ⅹ的澳丝圆丝,如图8(e)所示,在与相同托槽组合时,不锈钢圆丝与托槽间的正畸摩擦力高于相同截面尺寸澳丝圆丝与托槽间的正畸摩擦力. 对比分析代号Ⅴ、Ⅵ、Ⅶ的不锈钢圆丝和代号Ⅰ、Ⅱ、Ⅲ的不锈钢方丝,在受到托槽约束的情况下,截面积较小的圆丝所产生的摩擦力可以达到甚至超过截面积较大的方丝,考虑其原因为随着矩形弓丝长边长度的增加而短边不变,矩形弓丝与托槽槽沟接触面积基本不变,且随着截面积增大,约束力与托槽间底边夹角变化幅度减小,导致正畸摩擦力的增加幅度较小.
结合以上三类弓丝试验结果进行分析,在与托槽槽沟双侧接触的情况下,正畸摩擦力与托槽槽沟宽度成负相关,托槽槽沟宽度越小,
{\theta _i} 越大,从而{\theta _i} - \theta _{\text{c}}^i 越大,根据式(27)可知正畸弓丝所受到的三种分力都增大,因此摩擦力就会越大;正畸摩擦力与弓丝截面尺寸成正相关,弓丝截面尺寸越大,即在式(27)中I值逐渐增加,约束力与刻痕阻力越大,因此摩擦力也会越大;但正畸摩擦力受托槽槽沟宽度的影响程度明显高于弓丝截面尺寸的影响,即{\theta _i} 变化幅度对结果的影响超过I变化的影响. 另外,与方丝相比,圆丝的截面尺寸的变化引起的正畸摩擦力的变化较为敏感;与圆丝相比,托槽槽沟宽度的变化引起方丝与托槽间的正畸摩擦力变化较为敏感.2.3.2 不同接触角度试验
不同接触角度下正畸摩擦力的试验结果及理论结果如表1所示,在测定不同接触角度情况下正畸摩擦力时,始终采用T40托槽与正畸弓丝组合,设置了四种接触角度对十种弓丝分别进行摩擦力测量,代号Ⅰ、Ⅱ和Ⅲ的不锈钢方丝,根据表1中试验结果可知,相同截面尺寸的方丝与托槽间的正畸摩擦力随接触角度增大而增大,试验值与理论值的误差率处于1.90%~8.30%之间;代号Ⅳ、Ⅴ、Ⅵ和Ⅶ的不锈钢圆丝,代号Ⅷ、Ⅸ和Ⅹ的澳丝圆丝,根据表1中试验结果可知,相同截面直径的圆丝与托槽间的正畸摩擦力随接触角度增大而增大,对于不锈钢圆丝,试验值与理论值的误差率处于0.55%~8.55%范围,对于澳丝圆丝,试验值与理论值的误差率均处于0.70%~9.65%之间. 对于以上两种试验结果,理论模型与实际模型存在的误差,可能是由结扎丝施力不均和弓丝拉动过程中接触角与所设定角度的微小改变造成的,但在实际矫治中,牙齿移动速度极低,以上问题将得以缓解,因此本文中误差率的大小在临床正畸中是允许的.
表 1 不同接触角度正畸摩擦力试验数值、理论数值及偏差率Table 1. Experimental values, theoretical values and deviation rate of orthodontic friction at different contact anglesContact angle/(°) Orthodontic friction and deviation rate Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ 0 Exp/N 0.354 0.422 0.497 0.272 0.298 0.356 0.476 0.279 0.345 0.408 Theo/N 0.386 0.438 0.467 0.257 0.303 0.372 0.452 0.283 0.328 0.413 Dev/% 8.273 3.638 6.408 5.767 1.799 4.226 5.247 1.349 5.064 1.191 3 Exp/N 0.569 0.645 0.742 0.301 0.412 0.502 0.537 0.346 0.419 0.483 Theo/N 0.573 0.658 0.729 0.322 0.398 0.472 0.529 0.338 0.399 0.467 Dev/% 0.742 1.926 1.757 6.535 3.495 6.307 1.523 2.270 4.995 3.455 6 Exp/N 0.657 0.748 0.866 0.442 0.567 0.799 1.117 0.477 0.652 0.784 Theo/N 0.627 0.731 0.813 0.416 0.573 0.802 1.109 0.439 0.595 0.820 Dev/% 4.784 2.300 6.519 6.376 1.055 0.338 0.708 8.712 9.645 4.363 9 Exp/N 0.883 0.946 1.033 0.502 0.668 0.971 1.359 0.486 0.697 0.975 Theo/N 0.816 0.989 1.023 0.462 0.653 0.904 1.265 0.495 0.684 0.929 Dev/% 8.251 4.376 0.994 8.550 2.297 7.457 7.445 1.766 1.920 4.982 Exp: experimental orthodontic friction; Theo: theoretical orthodontic friction; Dev: deviation rate 综合分析代号Ⅴ、Ⅵ、Ⅶ的不锈钢圆丝和代号Ⅷ、Ⅸ、Ⅹ的澳丝圆丝的正畸摩擦力,在弓丝组合的托槽参数不变的情况下,对于同一接触角度,不锈钢圆丝与托槽间的正畸摩擦力高于相同截面尺寸澳丝圆丝与托槽间的正畸摩擦力. 分析代号Ⅰ、Ⅱ、Ⅲ的不锈钢方丝和代号Ⅴ、Ⅵ、Ⅶ的不锈钢圆丝的正畸摩擦力,在接触角为0°和3°时,矩形弓丝较圆形弓丝产生的摩擦力大,考虑其原因是矩形弓丝的有效转矩更大,对托槽施加的有效压力也大,但随着接触角的增加,不锈钢圆丝比不锈钢方丝摩擦力增加得更迅速,在逐渐趋近托槽约束的过程中,接触角在6°和9°时,圆丝出现了比方丝更大的摩擦力.
结合以上三组试验结果进行分析,在弓丝组合的托槽参数不变的情况下,接触角的增大将引起
{\theta _i} 的大幅度增大,因此正畸摩擦力与接触角度成正相关. 另外,与方丝相比,圆丝的截面尺寸的变化对正畸摩擦力较为敏感.综上所述,在满足正畸治疗效果的前提下,为实现轻力矫治的效果,选用摩擦系数较小的矫治器材料,确保牢固的弓丝结扎及均匀的施力方式,并尽可能采用较细的正畸弓丝或槽沟尺寸较宽的托槽,将托槽与正畸弓丝间接触角度调整至最小,更易于避免摩擦力的产生,另外,使用澳丝进行矫治更能减小正畸摩擦力的影响进而提高矫治效率. 在托槽接触约束较大或需要特殊弓丝形态的情况下,同种材料中可首先考虑方丝矫治.
3. 结论
正畸摩擦力的有效控制是促进牙齿最佳生物运动的关键,本文中针对影响正畸摩擦力的机械因素,根据弓丝与托槽的接触情况将正畸摩擦力分为三种接触分力,依据正畸弓丝与托槽间的几何关系、力学关系及物理参数,提出一种基于分力叠加原理的计及接触角度的正畸摩擦力预测模型建立方法,将弓丝与托槽间接触角度作为正畸摩擦力预测模型的影响因素,避免了因考虑因素不全而导致的精度丢失问题,从而有效提高了正畸摩擦力数学模型的精确度. 根据弓丝和托槽间滑动机制提出了以有限滑动法进行正畸摩擦力测量,模拟弓丝在托槽间的相对位移搭建了正畸摩擦力测量系统,以影响正畸摩擦力大小的弓丝截面尺寸、槽沟宽度、弓丝与托槽接触角为变量进行摩擦力的试验测量,探究了正畸摩擦力随着关键参数的变化规律,将测量得到的试验数据与预测模型得出的理论数据进行分析,正畸摩擦力模型得出的理论数据与试验数据的误差率处于0.55%~9.65%之间,将来可利用该模型建立正畸摩擦力预测系统,通过理论计算与仿真的方式对个性化正畸摩擦学行为进行精确预测,从而辅助数字化正畸治疗,达到轻力矫治的效果. 未来将进一步将生物因素考虑到正畸摩擦力预测模型中,尽可能模拟在口内的真实环境进行建模和试验.
-
表 1 不同接触角度正畸摩擦力试验数值、理论数值及偏差率
Table 1 Experimental values, theoretical values and deviation rate of orthodontic friction at different contact angles
Contact angle/(°) Orthodontic friction and deviation rate Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ 0 Exp/N 0.354 0.422 0.497 0.272 0.298 0.356 0.476 0.279 0.345 0.408 Theo/N 0.386 0.438 0.467 0.257 0.303 0.372 0.452 0.283 0.328 0.413 Dev/% 8.273 3.638 6.408 5.767 1.799 4.226 5.247 1.349 5.064 1.191 3 Exp/N 0.569 0.645 0.742 0.301 0.412 0.502 0.537 0.346 0.419 0.483 Theo/N 0.573 0.658 0.729 0.322 0.398 0.472 0.529 0.338 0.399 0.467 Dev/% 0.742 1.926 1.757 6.535 3.495 6.307 1.523 2.270 4.995 3.455 6 Exp/N 0.657 0.748 0.866 0.442 0.567 0.799 1.117 0.477 0.652 0.784 Theo/N 0.627 0.731 0.813 0.416 0.573 0.802 1.109 0.439 0.595 0.820 Dev/% 4.784 2.300 6.519 6.376 1.055 0.338 0.708 8.712 9.645 4.363 9 Exp/N 0.883 0.946 1.033 0.502 0.668 0.971 1.359 0.486 0.697 0.975 Theo/N 0.816 0.989 1.023 0.462 0.653 0.904 1.265 0.495 0.684 0.929 Dev/% 8.251 4.376 0.994 8.550 2.297 7.457 7.445 1.766 1.920 4.982 Exp: experimental orthodontic friction; Theo: theoretical orthodontic friction; Dev: deviation rate -
[1] Lombardo G, Vena F, Negri P, et al. Worldwide prevalence of malocclusion in the different stages of dentition: A systematic review and meta-analysis[J]. European Journal of Paediatric Dentistry, 2020, 21(2): 115–122. doi: 10.23804/ejpd.2020.21.02.05
[2] Shen L, He F, Zhang C, et al. Prevalence of malocclusion in primary dentition in mainland China, 1988–2017: a systematic review and meta-analysis[J]. Scientific Reports, 2018, 8(1): 4716. doi: 10.1038/s41598-018-22900-x
[3] Jiang J G, Huang Z Y, Ma X F, et al. Establishment and experiment of utility archwire dynamic orthodontic moment prediction model[J]. IEEE Transactions on Biomedical Engineering, 2019, 67(7): 1958–1968. doi: 10.1109/TBME.2019.2953135
[4] Jiang J G, Chen H J, Huang Z Y, et al. Orthodontic force prediction model of T-loop closing spring based on dynamic resistance model[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2020, 234(12): 1384–1396. doi: 10.1177/0954411920943433
[5] Li B X, Huang Y H, Lin X P. Continuous archwire technique for the correction of completely transposed maxillary incisors[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2021, 159(3): 360–372
[6] 周广宏, 丁红燕, 戴起勋. 新型牙齿正畸丝材料在唾液中的往复滑动摩擦磨损特性研究[J]. 摩擦学学报, 2007, 27(5): 411–415 doi: 10.3321/j.issn:1004-0595.2007.05.003 Zhou Guanghong, Ding Hongyan, Dai Qixun. Slide behavior of new type orthodontic wire in saliva[J]. Tribology, 2007, 27(5): 411–415 doi: 10.3321/j.issn:1004-0595.2007.05.003
[7] 刘晓默, 张梦琦, 林久祥, 等. 正畸托槽与弓丝间摩擦力性能的实验研究[J]. 中国医科大学学报, 2019, 48(1): 23–28 doi: 10.12007/j.issn.0258-4646.2019.01.005 Liu Xiaomo, Zhang Mengqi, Lin Jiuxiang, et al. Experimental research on friction between domestic brackets and archwires[J]. Journal of China Medical University, 2019, 48(1): 23–28 doi: 10.12007/j.issn.0258-4646.2019.01.005
[8] 刘刚, 杨丽, 刘斌, 等. 口腔正畸摩擦研究进展[J]. 摩擦学学报, 2018, 38(2): 238–246 Liu Gang, Yang Li, Liu Bin, et al. Research progress of orthodontic friction[J]. Tribology, 2018, 38(2): 238–246
[9] Liu Z, Sun T H, Fan Y B. Biomechanical influence of anchorages on orthodontic space closing mechanics by sliding method[J]. Medical & Biological Engineering & Computing, 2020, 58(5): 1091–1097. doi: 10.1007/s11517-020-02149-1
[10] Nursel A, Serdar A B, Selim A. Comparison of the frictional characteristics of aesthetic orthodontic brackets measured using a modified in vitro technique[J]. Korean Journal of Orthodontics, 2015, 45(1): 29–37. doi: 10.4041/kjod.2015.45.1.29
[11] Jiang J G, Ma X F, Zuo S H, et al. Digital expression and interactive adjustment method of personalized orthodontic archwire for robotic bending[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2019, 13(2): 18-00359. doi: 10.1299/jamdsm.2019jamdsm0031
[12] Jiang J G, Huang Z Y, Ma X F, et al. Orthodontic process safety evaluation based on periodontal ligament capillary pressure and ogden model[J]. Journal of Mechanics in Medicine and Biology, 2018, 18(8): 1840033. doi: 10.1142/S021951941840033X
[13] Gomez-Gomez S L, Sánchez-Obando N, Alvarez-Castrillon M A, et al. Comparison of frictional forces during the closure of extraction spaces in passive self-ligating brackets and conventionally ligated brackets using the finite element method[J]. Journal of Clinical and Experimental Dentistry, 2019, 11(5): e439–e446. doi: 10.4317/jced.55739
[14] Ardila C M. Comparison of frictional resistance between passive self-ligating brackets and slide-type low-friction ligature brackets during the alignment and leveling stage[J]. Journal of Clinical and Experimental Dentistry, 2019, 11(7): 593–600. doi: 10.4317/jced.55913
[15] Razali M F, Mahmud A. Computational study on the effect of contact friction towards deactivation force of superelastic NiTi arch wire in a bracket system[J]. Materials Research Express, 2019, 6(8): 085709. doi: 10.1088/2053-1591/ab2255
[16] Baccetti T, Franchi L, Camporesi M, et al. Orthodontic forces released by low-friction versus conventional systems during alignment of apically or buccally malposed teeth[J]. The European Journal of Orthodontics, 2011, 33(1): 50–54. doi: 10.1093/ejo/cjq043
[17] Alsabti N, Bourauel C, Talic N. Comparison of force loss during sliding of low friction and conventional TMA orthodontic archwires[J]. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopdie, 2020, 82(4): 218–225. doi: 10.1007/s00056-020-00266-y
[18] Youssef A, Dennis C, Beyer J P, et al. Resistance to sliding of orthodontic archwires under increasing applied moments[J]. Journal of Applied Biomaterials and Fundamental Materials, 2020, 18(2): 228080002096802. doi: 10.1177/2280800020968027
[19] El-Bialy T, Alobeid A, Dirk C, et al. Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction[J]. Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie, 2019, 80(2): 68-78
[20] Pilon J, Costa A R, Correr-Sobrinho L, et al. A comparative analysis of the frictional resistance of esthetic orthodontic wires[J]. Revista de odontologia da UNESP/Universidade Estadual Paulista (UNESP), 2019, 48(3): e20190022
[21] Takada M, Nakajima A, Kuroda S, et al. In vitro evaluation of frictional force of a novel elastic bendable orthodontic wire[J]. Angle Orthodontist, 2018, 88(5): 602–610. doi: 10.2319/111417-779.1
[22] Naziris K, Piro N E, R Jäger, et al. Experimental friction and deflection forces of orthodontic leveling archwires in three-bracket model experiments[J]. 2019, 80(5): 223-235
[23] 吴建英, 何勇, 李晨军. 氧化锆托槽与不同托槽和弓丝之间摩擦阻力的实验研究[J]. 西南军医, 2018, 20(3): 348–352 doi: 10.3969/j.issn.1672-7193.2018.03.014 Wu Jianying, He Yong, Li Chenjun. An experimental study on frictional resistance of zirconia bracket and other different type brackets with different size archwires[J]. Journal of Military Surgeon in Southwest China, 2018, 20(3): 348–352 doi: 10.3969/j.issn.1672-7193.2018.03.014
[24] Schmeidl K, Janiszewska-Olszowska J, Grocholewicz K. Clinical features and physical properties of gummetal orthodontic wire in comparison with dissimilar archwires: a critical review[J]. BioMed Research International, 2021, 2021(3): 1–9. doi: 10.1155/2021/6611979
[25] 周珊, 陆晓丽, 韩晶莹, 等. 新研制自锁托槽摩擦力的实验研究[J]. 中国美容医学, 2007, 16(6): 820–82 doi: 10.3969/j.issn.1008-6455.2007.06.038 Zhou Shan, Lu Xiaoli, Han Jingying, et al. Study of friction forces to self-locking bracket developed recently[J]. Chinese Journal of Aesthetic Medicine, 2007, 16(6): 820–82 doi: 10.3969/j.issn.1008-6455.2007.06.038
[26] Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics[J]. American Journal of Orthodontics & Dentofacial Orthopedics, 2005, 127(5): 542–551. doi: 10.1016/j.ajodo.2004.12.007
[27] Prashant P S, Hemant N, Meera G. Friction in orthodontics[J]. Journal of Pharmacy and Bioallied Sciences, 2015, 7(2): 2–8. doi: 10.4103/0975-7406.163439
[28] Jiang J G, Han Y S, Zhang Y D, et al. Springback mechanism analysis and experiments on robotic bending of rectangular orthodontic archwire[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1406–1415. doi: 10.1007/s10033-017-0142-0
[29] Yumi Y, Hideki I, Masato N, et al. Effects of sliding velocity on friction an in vitro study at extremely low sliding velocity approximating orthodontic tooth movement[J]. Angle Orthodontist, 2014, 84(3): 451–458. doi: 10.2319/060513-427.1
[30] Liu X, Lin J, Ding P. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment[J]. Scanning, 2013, 35(4): 265–272. doi: 10.1002/sca.21060
-
期刊类型引用(2)
1. 姜金刚,李长鹏,李风潇,孙健鹏,张永德. 尖牙反(牙合)矫治人字形和T形曲组合正畸弓丝矫治力建模. 仪器仪表学报. 2024(07): 189-199 . 百度学术
2. 胡娟,赵蔚萍,付丽丽,阎旭. 直丝弓口腔正畸矫治力与患者正畸牙移动、龈沟液炎症反应程度的相关性分析. 临床和实验医学杂志. 2023(16): 1770-1773 . 百度学术
其他类型引用(2)