Loading [MathJax]/jax/output/SVG/jax.js

ISSN   1004-0595

CN  62-1224/O4

高级检索

Ti6Al4V合金激光熔覆Ti3SiC2增强Ni60复合涂层组织与摩擦学性能

祝杨, 庄宿国, 刘秀波, 刘一帆, 柯金, 孟元

祝杨, 庄宿国, 刘秀波, 刘一帆, 柯金, 孟元. Ti6Al4V合金激光熔覆Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J]. 摩擦学学报, 2021, 41(3): 414-422. DOI: 10.16078/j.tribology.2020168
引用本文: 祝杨, 庄宿国, 刘秀波, 刘一帆, 柯金, 孟元. Ti6Al4V合金激光熔覆Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J]. 摩擦学学报, 2021, 41(3): 414-422. DOI: 10.16078/j.tribology.2020168
ZHU Yang, ZHUANG Suguo, LIU Xiubo, LIU Yifan, KE Jin, MENG Yuan. Microstructure and Tribological Properties of Ti3SiC2 Enhanced Ni60 Composite Coatings on Ti6Al4V Alloy by Laser Cladding[J]. TRIBOLOGY, 2021, 41(3): 414-422. DOI: 10.16078/j.tribology.2020168
Citation: ZHU Yang, ZHUANG Suguo, LIU Xiubo, LIU Yifan, KE Jin, MENG Yuan. Microstructure and Tribological Properties of Ti3SiC2 Enhanced Ni60 Composite Coatings on Ti6Al4V Alloy by Laser Cladding[J]. TRIBOLOGY, 2021, 41(3): 414-422. DOI: 10.16078/j.tribology.2020168
祝杨, 庄宿国, 刘秀波, 刘一帆, 柯金, 孟元. Ti6Al4V合金激光熔覆Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J]. 摩擦学学报, 2021, 41(3): 414-422. CSTR: 32261.14.j.tribology.2020168
引用本文: 祝杨, 庄宿国, 刘秀波, 刘一帆, 柯金, 孟元. Ti6Al4V合金激光熔覆Ti3SiC2增强Ni60复合涂层组织与摩擦学性能[J]. 摩擦学学报, 2021, 41(3): 414-422. CSTR: 32261.14.j.tribology.2020168
ZHU Yang, ZHUANG Suguo, LIU Xiubo, LIU Yifan, KE Jin, MENG Yuan. Microstructure and Tribological Properties of Ti3SiC2 Enhanced Ni60 Composite Coatings on Ti6Al4V Alloy by Laser Cladding[J]. TRIBOLOGY, 2021, 41(3): 414-422. CSTR: 32261.14.j.tribology.2020168
Citation: ZHU Yang, ZHUANG Suguo, LIU Xiubo, LIU Yifan, KE Jin, MENG Yuan. Microstructure and Tribological Properties of Ti3SiC2 Enhanced Ni60 Composite Coatings on Ti6Al4V Alloy by Laser Cladding[J]. TRIBOLOGY, 2021, 41(3): 414-422. CSTR: 32261.14.j.tribology.2020168

Ti6Al4V合金激光熔覆Ti3SiC2增强Ni60复合涂层组织与摩擦学性能

基金项目: 国家自然科学基金(52075559,U1737112),中国科学院兰州化学物理研究所固体润滑国家重点实验开放基金(LSL-1802)和辽宁省航发材料摩擦学重点实验室开放基金(LKLAMTF202101)资助
详细信息
  • 中图分类号: TG146.4; TH117.1

Microstructure and Tribological Properties of Ti3SiC2 Enhanced Ni60 Composite Coatings on Ti6Al4V Alloy by Laser Cladding

Funds: The project was supported by the National Natural Science Foundation of China (52075559, U1737112), the Open Fund of State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (LSL-1802) and the Open Fund of Liaoning Provincial Key Laboratory of Aero-engine Materials Tribology (LKLAMTF202101)
More Information
  • 摘要: 为了提高Ti6Al4V合金的耐磨减摩性能,在其表面利用激光熔覆技术制备出两种不同配比的Ti3SiC2/Ni60复合涂层,分别是5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2)(均为质量分数),研究了这两种涂层在室温、300和600 ℃下的微观组织、显微硬度、摩擦学性能表现及相关磨损机理. 结果表明:涂层主要由硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2组成. N1、N2涂层的显微硬度均为基体(350HV0.5)的3倍左右,分别为1 101.90HV0.5 和1 037.23HV0.5 ,在室温、300和600 ℃下的摩擦系数分别为0.39、0.35、0.30和0.41、0.45、0.44,均小于基体的摩擦系数(0.51、0.49、0.47). N1、N2涂层在室温、300和600 ℃下的磨损率分别为3.07×10−5、1.47×10−5、0.77×10−5 mm3/(N·m)和1.45×10−5、0.96×10−5、0.62×10−5 mm3/(N·m),均远小于基体[35.96×10−5、25.99×10−5、15.18×10−5mm3/(N·m)]. 在本文中Ti3SiC2提高了Ti6Al4V合金的耐磨减摩性能,使得N1涂层表现出更好的减摩性能,N2涂层表现出更好的耐磨性能. 室温下,磨粒磨损、塑性变形以及轻微的黏着磨损为两种涂层的主要磨损机理;300 ℃时,塑性变形、氧化磨损和黏着磨损是N1涂层的对应机理,600 ℃时出现了三体磨粒磨损;在300和600 ℃时,黏着磨损、氧化磨损及磨粒磨损为N2涂层的主要磨损机理.
    Abstract: Ti6Al4V alloy (TC4) has excellent comprehensive mechanical properties, so it is widely used in jet engine pressure disc, pressure boat body, water ship pump body and industrial fuselage fire wall. However, due to the poor oxidation resistance and tribological properties in high temperature environment, its application was greatly limited. Therefore, two kinds of Ti3SiC2/Ni60 composite coatings, i.e. 5% Ti3SiC2 + Ni60 (N1) and 10%Ti3SiC2 + Ni60 (N2)(weight fraction) were prepared by laser cladding technology on the Ti6Al4V alloy to enhance the wear resistance and friction reduction performance. The microstructure, microhardness, tribological performance and the related wear mechanisms of the composite coatings were investigated at room temperature (RT), 300 and 600 ℃ by using various characterization methods (scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer). According to the results, the composite coatings were mainly composed of hard phase TiC/TiB/TixNiy, γ-Ni solid solution continuous phase and lubricating phase Ti3SiC2 at room temperature; however, at high temperature, dense oxide films of TiO2 and SiO2 with certain lubricating effect were produced. In addition, the microhardnesses of N1 and N2 composite coatings were 1 101.90HV0.5 and 1 037.23HV0.5, respectively, which were about three times that of the substrate (350HV0.5), due to the effects of dispersion strengthening, solid solution strengthening, fine grain strengthening and the feature of ternary lubricating phase Ti3SiC2 with the dual effects of metal and ceramic. The coefficients of friction (COF) of the N1 composite coatings at room temperature, 300 and 600 ℃ were 0.39, 0.35 and 0.30, while the N2 composite coatings were 0.41, 0.45 and 0.44, which both were lower than those of substrate (0.51, 0.49, 0.47). The wear rates of N1 and N2 composite coatings at room temperature, 300 and 600 ℃ were 3.07×10−5, 1.47×10−5, 0.77×10−5 mm3/(N·m) and 1.45×10−5, 0.96×10−5, 0.62×10−5 mm3/(N·m) respectively, which both were far lower than those of the substrate [35.96×10−5, 25.99×10−5, 15.18×10−5 mm3/(N·m)]. It can be seen that the addition of ternary solid lubricating phase Ti3SiC2 improved the wear resistance and friction reduction properties of Ti6Al4V alloy in this work, rendering N1 composite coating better friction reducing performance and N2 composite coating better wear resistance. At room temperature, the wear of the substrate was mainly caused by abrasive wear, adhesive wear and plastic deformation; while abrasive wear, mild adhesive wear and plastic deformation were the main wear mechanisms of the two composite coatings. In the high temperature wear process, the surface of Ti6Al4V alloy was dominated by oxidation wear, adhesive wear, abrasive wear and mild plastic deformation. At 300 ℃, three-body abrasive wear, adhesive wear and oxidation wear were the main wear mechanisms of the two composite coatings. At 600 ℃, the main wear mechanisms were abrasive wear, adhesive wear and oxidation wear, and the plastic deformation of N2 composite coating was relatively severe.
  • Ti6Al4V合金的综合力学性能优异,因而被广泛地应用于喷气发动机的压气盘、耐压艇体、水上船舶的泵体及工业机身的防火壁等. 但由于其在高温环境中的抗氧化性及摩擦学性能均有明显缺陷,限制了其在高温条件下的应用,因此在Ti6Al4V合金表面研究出高温条件下具有优异摩擦学性能的复合涂层具有重要意义[1-4].

    激光熔覆技术在涂层制备及损伤修复等领域中应用广泛[5]. Shakti等[6]采用激光包覆技术在合金表面制备出了优异的AlN/Ni/Ti6Al4V涂层,结果表明:涂层的表面没有出现宏观裂纹和气孔,其组分主要为Ni3Ti、Ti3AlN等金属间化合物,涂层的显微硬度提高到1000~1250HV0.5,约为基体(370HV0.5)的3倍,涂层的摩擦系数(0.4)相比于基体(0.5)也有所降低. Obadele等[7]选择TiNi/TiNiZrO2体系作为耐磨涂层用于加强Ti6Al4V合金表面抗腐蚀磨损性能,该涂层由TiNi/Ti2Ni相组成,且激光熔覆的快速冷凝以及ZrO2的加入使涂层的微观组织从枝晶结构变为更加均匀致密的花状结构,从而使复合涂层在室温下的硬度和耐腐蚀磨损性能表现优异.

    Ni60合金粉末具有耐磨性好和硬度高等特点,常被用作激光熔覆材料[8-9]. 而Ti3SiC2作为一种典型的三元层状Mn+1AXn相材料,同时结合了金属优越的可加工性、物理特性和陶瓷优良的热稳定性、抗氧化性、自润滑特性等[10],但其摩擦性能在室温下并没有表现出明显的优势[11],然而在作为复合涂层的掺杂物时,其层状结构的特点表现出优异的自润滑性能[12]. Yan等[10]利用激光技术原位合成了Ni25/Ti3SiC2复合涂层,结果表明,室温下复合涂层的显微硬度(850.6HV0.2)明显高于基体360(HV0.2),另外,由于润滑相Ti3SiC2与陶瓷相TiC/Ti5Si3的协同作用,涂层的摩擦系数(0.33)相比于基体(0.43)有明显地下降,磨损率也仅为基体磨损率25.7×10−5 mm3/(N·m)的一半左右,显著提高了Ti6Al4V合金的强度和摩擦学性能.

    为了丰富激光熔覆材料体系,深入探究Ti3SiC2在涂层中的效应,本次工作中设计了两种纯Ti3SiC2与Ni60粉末的混合比例,并采用同步送粉法制备Ti3SiC2/Ni60/Ti6Al4V复合涂层,系统地研究了其在宽温域下的微观形貌、显微硬度、物相组成、摩擦学性能及相关磨损机理,以期为Ti6Al4V合金的商业应用提供技术参考.

    利用电火花线切割将Ti6Al4V合金切割成40 mm×20 mm×8 mm的基材试样,使用SiC砂纸去除表层杂质氧化皮,清洗并吹干备用. 本文中所用试验材料的化学成分列于表1中.

    表  1  Ti6Al4V合金和Ni60粉末的化学成分
    Table  1.  Chemical components of Ti6Al4V alloy and Ni60 powder
    MaterialsWeight fraction/%
    AlVCFeTiCrBSiIINi
    Ti6Al4V6.013.80.10.3Bal----
    Ni60--0.9≤8.0-163.34.5Bal
    下载: 导出CSV 
    | 显示表格

    为了得到混合均匀、流动性好的激光熔覆复合粉末,采用DECO-PBM-V-0.4L型行星立式球磨机(长沙德科设备有限公司)以540 r/min混合粉末2 h,再采用RC-LDM8060型送粉式金属3D打印装备(中科煜宸激光技术有限公司)以同步送粉方式制备复合涂层,其工艺参数参见表2. 对试样的熔覆面进行磨抛处理后,用HF/HNO3/H2O的混合溶液(VHF : VHNO3 : VH2O=1 : 3 : 6)腐蚀30 s. 接着使用D8 ADVANCE型XRD(Germany,Bruker Co)对材料表层物相进行初步比对分析,其扫描角度设置为10°~ 90°. 使用Quanta FEG 250型SEM(America,FEI Co)观察涂层不同区域显微组织形貌,并通过其EDS测定不同典型组织的各元素种类及含量. 借助HX-1000TM/LCD型显微硬度计(上海光学仪器厂)对试样进行多组测试,然后取测试数据平均值以此得到涂层的平均显微硬度,而摩擦学试验则需采用球盘式高温摩擦磨损试验机(HT-1000型),按照表3参数设置后进行试验,其中摩擦对偶采用直径尺寸为5 mm的氮化硅球(1 700HV). MT-500型探针式磨痕测量仪测得试验数据后,再根据式(1)计算磨损率W,单位mm3/(N·m). 采用SEM-EDS分析磨损表面形貌和磨屑形貌,最后总结讨论相关磨损机理.

    表  2  激光熔覆工艺参数
    Table  2.  Laser cladding process parameters
    Beam diameter/mmLaser power/WScanning speed/(mm/min)Overlapping ratio/%Powder feed rate/(mm3/min)
    Φ2800800502 109.8
    下载: 导出CSV 
    | 显示表格
    表  3  摩擦磨损试验参数
    Table  3.  Experimental parameters of friction and wear
    Load/NTemperature/℃Wear
    time/min
    Rotation radius/mmLine velocity/(m/min)
    6RT,300,60030216.89
    下载: 导出CSV 
    | 显示表格
    W=VF×d (1)

    其中:W是试样对应的磨损率,单位mm3/(N·m),F是试验中施加的法向载荷,单位N,d是滑动距离,单位m,V是材料在磨损过程中损失的体积,单位mm3.

    图1是复合涂层的横截面形貌,可以看到N1、N2涂层和基体间有1条光亮熔合带,代表两者间形成了无宏观裂纹和气孔的良好冶金结合[13]. 从图2可知,两种复合涂层的主要物相均为硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2. 在激光熔覆过程中,由于Ti和C、B的亲和力较好,且Ti与C的亲和力更好,因此快速凝固熔池中先生成TiC,再生成TiB[14]. XRD图谱中并未观测到TiB2,是因为B元素全部来自于Ni60粉末,含量远远少于Ti,Ti与B生成TiB2后,TiB2又与Ti反应生成TiB,因此没有TiB2[15];而涂层中没有出现多余的硅化物是由于Ti3SiC2在熔池中的含量较低,分解产生的Ti5Si3进行了式(2~4)的化学反应,重新形成了新的润滑相以及部分融入γ-Ni固溶体中. 由热力学理论可知,以下化学反应式的Gibbs值均小于0,可以自发反应[9].

    图  1  复合涂层的横截面形貌
    Figure  1.  The cross-sectional microstructure of the composite coatings
    图  2  N1、N2涂层的XRD图谱
    Figure  2.  XRD patterns of N1, N2 coatings
    Ti5Si3+10TiC+2Si5Ti3SiC2ΔG=495.44kJ (2)
    Ti5Si3+4TiC+2C3Ti3SiC2ΔG=404.23kJ (3)
    Ti5Si3+7TiC+SiC4Ti3SiC2ΔG=387.57kJ (4)

    图3是复合涂层截面中部区域显微形貌及其典型组织,可以观察到涂层各区域组织分布基本均匀,主要包括深色块状组织(A、D),连续相(B、E)和灰色不规则组织(C、F). 根据表4所列图3中各典型组织EDS结果,同时结合图2中N1、N2涂层的XRD图谱分析可知:深色块状组织(A、D)中,Ti、B两种元素质量分数均在40%以上,推测其为TiB. 连续相(B、E)主要包含Ti和Ni元素,且有B、C、Al、V、Cr、Si和Fe元素,推测其为含有各种金属元素的γ-Ni固溶体和金属间化合物TixNiy. 灰色不规则组织(C、F)主要有C、Si和Ti元素,形状呈针状、片状、球状以及枝晶状等,因此推测其为TiC/Ti3SiC2混合组织[16-17],其中组织C中检测出较多Ni元素是由于检测区域内存在大量γ-Ni相.

    图  3  复合涂层中部区域显微形貌的SEM照片
    Figure  3.  SEM morphology of the middle region of the composite coatings
    表  4  图3典型组织的EDS结果
    Table  4.  EDS results of typical microstructures in Fig. 3
    AreaAtomic percentage/%
    BCAlSiTiVCrFeNi
    A45.221.310.120.3247.461.521.840.311.88
    B1.664.991.641.0420.231.034.492.1962.73
    C1.8514.630.3911.4628.921.554.343.2333.62
    D40.141.460.120.2352.462.282.030.101.16
    E2.454.350.401.9524.730.886.371.9356.94
    F2.5012.710.0714.0456.113.350.562.108.58
    下载: 导出CSV 
    | 显示表格

    根据图4结果可计算得到N1、N2涂层平均显微硬度分别为1101.90HV0.5 和1037.23HV0.5,均为基体(350HV0.5)的3倍左右. 原因可以归结如下:一是随着熔池中产生的强对流作用,复合涂层中生成的硬质相TiC/TiB/TixNiy均匀地分布在熔覆层内,产生弥散强化[18];二是熔池的冷凝速度很快,其中的Cr、Fe和Si等合金元素来不及充分反应,最终溶入固溶体中形成固溶强化[9],且由于存在较大过冷度,抑制晶粒长大,从而导致细晶强化;三是润滑相Ti3SiC2具有陶瓷和金属双重性能,能改善复合涂层的力学性能[14]. 结合图2的XRD结果可知,N1涂层的金属间化合物TixNiy的波峰较N2涂层高,因此导致N1涂层显微硬度高于N2;另外,从图3(b)中可以看出,当Ti3SiC2粉末含量增加后,由于Ti3SiC2和Ni60合金粉末间的润湿性较差,致使孔隙率上升,从而导致显微硬度降低[19-20]. 另一方面,在距表面100~260 μm范围内,N1涂层显微硬度略低于N2,是因为N1涂层的熔池区域较大,硬质相分散,产生的强化作用低于N2,但越靠近底部界面处,形成的金属间化合物增多,硬度随之呈上升趋势[9].

    图  4  复合涂层的显微硬度曲线
    Figure  4.  Microhardness curves of composite coatings

    图5为基体和两种复合涂层在不同温度下的平均摩擦系数. 在各温度下,基体的平均摩擦系数相对最高,且其随着温度的升高而逐渐下降,分别为0.51、0.49和0.47,原因是温度升高致使基体表面产生了1层由TiO2构成的、具有一定的减摩作用的致密氧化膜[21]. N1涂层在各温度下平均摩擦系数相对最低,且随着温度的升高而逐渐下降,分别为0.39、0.35和0.30,这是由于N1涂层硬度较高,表面抵抗弹塑性变形的能力较强,减小了切向摩擦阻力[22]. 另外,Ti3SiC2在激光熔覆过程中发生分解[23],结合图6可以看出,其产物在高温摩擦磨损过程中部分氧化,生成TiO2及SiO2[24],这两种氧化物与Ti3SiC2在磨损表面起到了润滑和减摩的作用,降低了高温下涂层的摩擦系数[2,25];N2涂层的平均摩擦系数从室温到300 ℃时呈上升趋势,但是在300~600 ℃时又有所下降,分别为0.41、0.45和0.44,这主要是当温度为300 ℃时,Ti3SiC2添加量增加后,涂层表面产生的薄氧化物膜结合力差,易发生分离、剥落[2],形成硬质磨粒,增大了摩擦对偶球在运动中的摩擦阻力,但是随着温度上升,氧化膜厚度和致密性增加,并与Ti3SiC2协同润滑导致摩擦系数下降.

    图  5  三种温度下基体和复合涂层的平均摩擦系数
    Figure  5.  The average friction coefficients of the substrate and composite coatings at three temperatures
    图  6  N1涂层在300 ℃和600 ℃下磨损表面的XRD图谱
    Figure  6.  XRD patterns of N1 coating wear surface at 300 ℃ and 600 ℃

    图7是不同温度下基体与各涂层的磨损率,可以明显地看出,基体的磨损率相对最大,在室温、300和600 ℃的磨损率分别为35.96×10−5、25.99×10−5和15.18×10−5 mm3/(N·m),说明其耐磨性较差;而两种涂层的表现均远好于基体,其中,N2涂层的磨损率相对最低,其对应的磨损率分别为1.45×10−5、0.96×10−5和0.62×10−5 mm3/(N·m);而N1涂层的磨损率分别为3.07×10-5、1.47×10−5和0.77×10−5 mm3/(N·m). 综上,Ti3SiC2的添加显著改善了材料表面的摩擦学性能,主要表现为两种涂层在不同的温度下,N1涂层具有更好的减摩性,N2涂层具有更好的耐磨性.

    图  7  Ti6Al4V合金和N1、N2涂层在不同温度下的磨损率
    Figure  7.  The wear rates of Ti6Al4V alloy and N1, N2 coatings at different temperatures

    图8为不同温度下合金基体和N1、N2涂层的磨损表面和磨屑形貌. 室温下,由图8(a1)(b1)可知,基体表层硬度低,致使其在摩擦过程中形成了塑性变形和黏着,并出现犁沟以及团聚的颗粒粉末状磨屑[26],因此基体的磨损主要由磨粒磨损、黏着磨损和塑性变形三种机理作用形成. 随着温度升高至300 ℃,从图8(a2)(b2)可以明显地看到,在合金表面,犁沟和塑性变形的现象减轻,磨屑尺寸增大,由室温下的粉末状变为颗粒状及层片状,这是由于合金表面形成了氧化膜,但此时的氧化膜与涂层结合力较差,在磨损过程中易分离剥落形成块状碎屑,部分碎屑被反复研磨成小颗粒;600 ℃时,如图8(a3)(b3)所示,由于温度较高及升温的时间延长,合金表面氧化程度加重,生成的氧化膜变厚,磨损表面的塑性变形进一步减轻,表面较为平整且嵌入的硬质颗粒减少,主要磨损类型为犁沟和剥落,其产生的磨屑与300 ℃下的基本一致. 因此在高温磨损过程中,Ti6Al4V合金的表面是由氧化磨损、黏着磨损、磨粒磨损以及轻微的塑性变形等机理主导.

    图  8  Ti6Al4V合金和N1、N2复合涂层在不同温度下的磨损形貌和磨屑形貌
    Figure  8.  Worn morphology and wear debris morphology of Ti6Al4V alloy and N1, N2 composite coatings at elevated temperatures

    图8(c1)(d1)显示出N1涂层磨损表面的主要表现为塑性变形、剥落及些许的黏着,但较合金基体情况明显减轻,说明Ti3SiC2抗剪切强度较低,易形成层间滑动,在磨损过程中能有效地降低摩擦[24]. N1涂层的磨屑主要为粉末状颗粒,表5中的EDS结果显示磨屑中含有较多的Ti、B、C、Ni和Si,结合图2表4可以推测出其主要由硬质相TiC/TiB、润滑相Ti3SiC2及部分γ-Ni固溶体基质构成,说明室温下的磨损过程中,N1涂层表面发生了硬质相剥落,并形成磨粒磨损. 根据图8(e1)(f1)可知,N2涂层的磨损表面较N1平整,但也有剥落、塑性变形以及磨粒磨削后产生的微裂纹,其磨屑形貌与N1基本一致,表5中的EDS结果显示C、B和Ti的含量比N1涂层多,而Si和Ni的含量减少. 结合图4的显微硬度曲线可以得出:因为N2表层硬度高,这些硬质相一方面减轻了对摩擦对偶球接触应力产生的严重塑性变形,避免γ-Ni固溶体基质及润滑相Ti3SiC2承受更多的磨损[27];另一方面在自身被拔出或剥落后,在运动过程中对磨损表面进行了犁削,导致了划痕及裂纹的出现. 综上,在室温下,磨粒磨损、轻微的黏着磨损及塑性变形是两种涂层的主要磨损机理.

    表  5  复合涂层在不同温度下磨屑的EDS分析
    Table  5.  EDS analysis of wear debris of composite coatings at elevated temperatures
    TemperatureComposite coatingAtomic percentage/%
    BCAlSiTiVCrFeNiO
    RTN112.5713.160.899.7841.830.404.342.759.324.89
    N213.6025.550.695.9747.940.513.560.916.304.97
    300 ℃N111.2210.960.466.4120.071.125.232.5322.6219.36
    N213.2011.960.555.3417.900.763.612.0926.4618.13
    600 ℃N16.697.910.773.6618.160.117.021.4210.2943.97
    N28.628.332.152.8019.570.254.310.7110.1142.14
    下载: 导出CSV 
    | 显示表格

    图8(c2)(d2)中可以看到N1涂层在300 ℃下仍然存在塑性变形及黏着,但相较于室温下有所改善,磨屑主要呈层片状. 表5中的EDS结果显示N1涂层中O元素质量分数达到了19.36%,说明温度上升时涂层表面形成了氧化膜,但在反复摩擦磨损中发生脆性断裂并剥落,而在磨损过程中并不能及时生成新的氧化膜来进一步保护涂层,导致摩擦对偶球与涂层表面发生黏着并产生塑性变形. 因此,在300 ℃下,氧化磨损、塑性变形和黏着磨损是N1涂层的主要磨损机理. 另外,结合图8(e2)(f2)可知,N2涂层的磨损表面沿摩擦运动方向呈现出严重的塑性分层及犁削现象,磨屑主要为粉末状颗粒及片状剥落物,与N1区别较大. 两种涂层间存在差异的主要原因如下:一是N2涂层表面陶瓷相TiC/TiB的增加导致形成的氧化膜与表面之间结合不紧密,氧化膜易发生层状剥落,并留在磨损表面上,形成三体磨粒磨损,导致了表面粗糙度和摩擦系数的增加[28];二是Ti3SiC2含量的增加使得磨损表面更容易发生黏着现象,进一步解释了300 ℃时N2涂层摩擦系数上升. 因此,在300 ℃下,三体磨粒磨损、黏着磨损和氧化磨损是两种涂层的主要磨损形式.

    N1涂层在600 ℃下的磨损表面和磨屑形貌如图8(c3)(d3)所示,磨损表面有明显分层现象和细微划痕,黏着痕迹也仍然存在. 磨屑主要为粉末状颗粒及层片状剥落物,结合表5的EDS结果可知,O元素的质量分数达到了43.97%,说明温度的上升以及升温时间的延长,能使表面氧化程度大大加重,并且B、C和Ni元素的含量均降低,说明磨屑大部分为脱落的氧化膜[29]. 其磨损过程可推测如下:在高温磨损过程中,N1涂层表面生成的致密氧化膜被剥离、脱落,随后继续生成新的氧化膜[30],并与Ti3SiC2协同润滑,使磨粒无法进一步侵入表面形成更严重的磨损,导致表面氧化膜分层,部分剥落的氧化物在磨损过程中被研磨成细小颗粒. 如图8(e3)(f3)所示,N2涂层磨损表面同样存在黏着痕迹、氧化膜脱落以及塑性变形现象,其产生的磨屑也与N1涂层相似. 表5中的EDS结果也与N1涂层相似. 因此,在600 ℃下,磨粒磨损、黏着磨损及氧化磨损是两种涂层的主要磨损机理,而N2涂层的塑性变形情况相对较重.

    a. 利用激光熔覆技术成功地在Ti6Al4V合金表面制备出5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2) (质量分散)自润滑复合涂层,复合涂层的主要物相为硬质相TiC/TiB、γ-Ni固溶体连续相、金属间化合物TixNiy以及润滑相Ti3SiC2.

    b. N1、N2涂层的显微硬度分别为1 101.90HV0.5和1037.23HV0.5,均高于基体(350HV0.5). 在不同温度下,N1、N2涂层均表现出良好的摩擦学性能,且在600 ℃下,N1涂层摩擦系数相对最低,为0.30;N2涂层磨损率相对最低,为0.62×10−5 mm3/(N·m).

    c. 室温下,两种涂层以磨粒磨损、塑性变形及黏着磨损三种形式为主要磨损机理;300 ℃时,N1涂层对应的磨损机理以塑性变形、氧化磨损和黏着磨损为主,600 ℃时出现了三体磨粒磨损;而在300和600 ℃时的N2涂层主要为氧化磨损、磨粒磨损及黏着磨损.

  • 图  1   复合涂层的横截面形貌

    Figure  1.   The cross-sectional microstructure of the composite coatings

    图  2   N1、N2涂层的XRD图谱

    Figure  2.   XRD patterns of N1, N2 coatings

    图  3   复合涂层中部区域显微形貌的SEM照片

    Figure  3.   SEM morphology of the middle region of the composite coatings

    图  4   复合涂层的显微硬度曲线

    Figure  4.   Microhardness curves of composite coatings

    图  5   三种温度下基体和复合涂层的平均摩擦系数

    Figure  5.   The average friction coefficients of the substrate and composite coatings at three temperatures

    图  6   N1涂层在300 ℃和600 ℃下磨损表面的XRD图谱

    Figure  6.   XRD patterns of N1 coating wear surface at 300 ℃ and 600 ℃

    图  7   Ti6Al4V合金和N1、N2涂层在不同温度下的磨损率

    Figure  7.   The wear rates of Ti6Al4V alloy and N1, N2 coatings at different temperatures

    图  8   Ti6Al4V合金和N1、N2复合涂层在不同温度下的磨损形貌和磨屑形貌

    Figure  8.   Worn morphology and wear debris morphology of Ti6Al4V alloy and N1, N2 composite coatings at elevated temperatures

    表  1   Ti6Al4V合金和Ni60粉末的化学成分

    Table  1   Chemical components of Ti6Al4V alloy and Ni60 powder

    MaterialsWeight fraction/%
    AlVCFeTiCrBSiIINi
    Ti6Al4V6.013.80.10.3Bal----
    Ni60--0.9≤8.0-163.34.5Bal
    下载: 导出CSV

    表  2   激光熔覆工艺参数

    Table  2   Laser cladding process parameters

    Beam diameter/mmLaser power/WScanning speed/(mm/min)Overlapping ratio/%Powder feed rate/(mm3/min)
    Φ2800800502 109.8
    下载: 导出CSV

    表  3   摩擦磨损试验参数

    Table  3   Experimental parameters of friction and wear

    Load/NTemperature/℃Wear
    time/min
    Rotation radius/mmLine velocity/(m/min)
    6RT,300,60030216.89
    下载: 导出CSV

    表  4   图3典型组织的EDS结果

    Table  4   EDS results of typical microstructures in Fig. 3

    AreaAtomic percentage/%
    BCAlSiTiVCrFeNi
    A45.221.310.120.3247.461.521.840.311.88
    B1.664.991.641.0420.231.034.492.1962.73
    C1.8514.630.3911.4628.921.554.343.2333.62
    D40.141.460.120.2352.462.282.030.101.16
    E2.454.350.401.9524.730.886.371.9356.94
    F2.5012.710.0714.0456.113.350.562.108.58
    下载: 导出CSV

    表  5   复合涂层在不同温度下磨屑的EDS分析

    Table  5   EDS analysis of wear debris of composite coatings at elevated temperatures

    TemperatureComposite coatingAtomic percentage/%
    BCAlSiTiVCrFeNiO
    RTN112.5713.160.899.7841.830.404.342.759.324.89
    N213.6025.550.695.9747.940.513.560.916.304.97
    300 ℃N111.2210.960.466.4120.071.125.232.5322.6219.36
    N213.2011.960.555.3417.900.763.612.0926.4618.13
    600 ℃N16.697.910.773.6618.160.117.021.4210.2943.97
    N28.628.332.152.8019.570.254.310.7110.1142.14
    下载: 导出CSV
  • [1] 刘秀波, 周仲炎, 翟永杰, 等. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79–85 doi: 10.11868/j.issn.1001-4381.2017.000698

    Liu Xiubo, Zhou Zhongyan, Zhai Yongjie, et al. Effect of heat treatment on microstructure and fretting wear resistance of laser clad Ti-matrix composite coatings[J]. Journal of Materials Engineering, 2018, 46(5): 79–85 doi: 10.11868/j.issn.1001-4381.2017.000698

    [2] 柯金, 刘秀波, 庄宿国, 等. Ti6Al4V合金激光熔覆NiMoSi复合涂层的高温抗氧化性能[J]. 中国表面工程, 2018, 31(6): 109–117 doi: 10.11933/j.issn.1007−9289.20180803003

    Ke Jin, Liu Xiubo, Zhuang Suguo, et al. High temperature oxidation resistance of NiMoSi composite coatings on Ti6Al4V alloy by laser cladding[J]. China Surface Engineering, 2018, 31(6): 109–117 doi: 10.11933/j.issn.1007−9289.20180803003

    [3] 周仲炎, 庄宿国, 杨霞辉, 等. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101–108 doi: 10.11868/j.issn.1001-4381.2018.000849

    Zhou Zhongyan, Zhuang Suguo, Yang Xiahui, et al. High temperature tribological properties of laser in situ synthesized self-lubricating composite coating on Ti6Al4V alloy[J]. Journal of Materials Engineering, 2019, 47(3): 101–108 doi: 10.11868/j.issn.1001-4381.2018.000849

    [4] 刘秀波, 王勉, 乔世杰, 等. TA2合金激光熔覆钛基自润滑耐磨复合涂层的高温摩擦学性能[J]. 摩擦学学报, 2018, 38(3): 283–290 doi: 10.16078/j.tribology.2018.03.005

    Liu Xiubo, Wang Mian, Qiao Shijie, et al. High temperature tribological properties of laser cladding titanium matrix self-lubricating wear resistant composite coating on TA2 alloy[J]. Tribology, 2018, 38(3): 283–290 doi: 10.16078/j.tribology.2018.03.005

    [5] 慕鑫鹏, 王文健, 祝毅, 等. 两种激光熔覆涂层对轮轨材料磨损与损伤性能的影响[J]. 摩擦学学报, 2020, 40(2): 225–233 doi: 10.16078/j.tribology.2019105

    Mu Xinpeng, Wang Wenjian, Zhu Yi, et al. Effects of two laser cladding coatings on wear and damage properties of wheel/rail materials[J]. Tribology, 2020, 40(2): 225–233 doi: 10.16078/j.tribology.2019105

    [6]

    Kumar S, Mandal A, Das A K, et al. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy[J]. Surface and Coatings Technology, 2018, 349: 37–49. doi: 10.1016/j.surfcoat.2018.05.053

    [7]

    Obadele B A, Andrews A, Mathew M T, et al. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating[J]. Applied Surface Science, 2015, 345: 99–108. doi: 10.1016/j.apsusc.2015.03.152

    [8]

    Yang Xiaotian, Li Xiuqian, Yang Qiangbin, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J]. Surface and Coatings Technology, 2020, 385: 125359. doi: 10.1016/j.surfcoat.2020.125359

    [9] 秦阳, 闫华, 高秋实, 等. TC4表面激光熔覆原位合成Ti3SiC2/Ni基涂层的组织与耐磨性能[J]. 有色金属工程, 2019, 9(4): 34–40, 85 doi: 10.3969/j.issn.2095-1744.2019.04.006

    Qin Yang, Yan Hua, Gao Qiushi, et al. Microstructure and wear resistance of in situ synthesized Ti3SiC2/Ni-based coating by laser cladding on titanium alloy[J]. Nonferrous Metals Engineering, 2019, 9(4): 34–40, 85 doi: 10.3969/j.issn.2095-1744.2019.04.006

    [10]

    Yan Hua, Liu Kaiwei, Zhang Peilei, et al. Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications[J]. Optics & Laser Technology, 2020, 126: 106077. doi: 10.1016/j.optlastec.2020.106077

    [11]

    El-Raghy T, Blau P, Barsoum M W. Effect of grain size on friction and wear behavior of Ti3SiC2[J]. Wear, 2000, 238(2): 125–130. doi: 10.1016/S0043-1648(99)00348-8

    [12]

    Shi Xiaoliang, Wang Mang, Zhai Wenzheng, et al. Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites[J]. Materials & Design, 2013, 45: 179–189. doi: 10.1016/j.matdes.2012.08.060

    [13]

    Xin Benbin, Yu Youjun, Zhou Jiansong, et al. Effect of copper molybdate on the lubricating properties of NiCrAlY laser clad coating at elevated temperatures[J]. Surface and Coatings Technology, 2017, 313: 328–336. doi: 10.1016/j.surfcoat.2017.01.098

    [14]

    Emmerlich J, Music D, Eklund P, et al. Thermal stability of Ti3SiC2 thin films[J]. Acta Materialia, 2007, 55(4): 1479–1488. doi: 10.1016/j.actamat.2006.10.010

    [15] 王芝萍, 高义民, 黄孝余, 等. Ti3SiC2含量对热处理态(Ti5Si3+TiC)/TC4复合材料组织及力学性能的影响[J]. 西安交通大学学报, 2020, 54(7): 196–204

    Wang Zhiping, Gao Yimin, Huang Xiaoyu, et al. Effects of Ti3SiC2 content on the microstructure and properties of heat treated(Ti5Si3+TiC)/TC4 composites[J]. Journal of Xi'an Jiaotong University, 2020, 54(7): 196–204

    [16] 王勇刚, 刘和剑, 回丽, 等. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47(5): 72–78 doi: 10.11868/j.issn.1001-4381.2018.000409

    Wang Yonggang, Liu Hejian, Hui Li, et al. High temperature tribological properties of laser cladding in -situ carbide reinforced self-lubricating wear resistant composite coating[J]. Journal of Materials Engineering, 2019, 47(5): 72–78 doi: 10.11868/j.issn.1001-4381.2018.000409

    [17]

    Wu C L, Zhang S, Zhang C H, et al. Formation mechanism and phase evolution of in situ synthesizing TiC-reinforced 316L stainless steel matrix composites by laser melting deposition[J]. Materials Letters, 2018, 217: 304–307. doi: 10.1016/j.matlet.2018.01.097

    [18]

    Ghesmati Tabrizi S, Sajjadi S A, Babakhani A, et al. Analytical and experimental investigation of the effect of SPS and hot rolling on the microstructure and flexural behavior of Ti6Al4V matrix reinforced with in situ TiB and TiC[J]. Journal of Alloys and Compounds, 2017, 692: 734–744. doi: 10.1016/j.jallcom.2016.09.026

    [19]

    Li H, Peng L M, Gong M, et al. Processing and microstructure of Ti3SiC2/M (M = Ni or Co) composites[J]. Materials Letters, 2005, 59(21): 2647–2649. doi: 10.1016/j.matlet.2005.04.010

    [20] 李眉葭, 孙荣禄, 牛伟, 等. Ti3SiC2含量对激光熔覆自润滑涂层组织及性能的影响[J]. 金属热处理, 2018, 43(10): 179–184 doi: 10.13251/j.issn.0254-6051.2018.10.036

    Li Meijia, Sun Ronglu, Niu Wei, et al. Effect of Ti3SiC2 content on microstructure and properties of laser clad self-lubricant coating[J]. Heat Treatment of Metals, 2018, 43(10): 179–184 doi: 10.13251/j.issn.0254-6051.2018.10.036

    [21] 李新星, 施剑峰, 王红侠, 等. Ti6Al4V合金干滑动磨损过程中摩擦层及摩擦氧化物的作用[J]. 表面技术, 2019, 48(12): 233–239 doi: 10.16490/j.cnki.issn.1001-3660.2019.12.028

    Li Xinxing, Shi Jianfeng, Wang Hongxia, et al. Role of tribo-layers and tribo-oxides in dry sliding wear process of Ti6Al4V alloy[J]. Surface Technology, 2019, 48(12): 233–239 doi: 10.16490/j.cnki.issn.1001-3660.2019.12.028

    [22]

    Zhao Yue, Feng Kai, Yao Chengwu, et al. Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants[J]. Surface and Coatings Technology, 2019, 359: 485–494. doi: 10.1016/j.surfcoat.2018.12.017

    [23] 李眉葭. TC4激光熔覆Ni60Ti3SiC2自润滑涂层的研究[D]. 天津: 天津工业大学, 2018

    Li Meijia. Research of laser cladding Ni60 Ti3SiC2 self-lubricating coating on TC4[D]. Tianjin: Tianjin Polytechnic University, 2018(in Chinese)

    [24]

    Hai Wanxiu, Ren Shufang, Meng Junhu, et al. Tribo-oxidation of self-mated Ti3SiC2 at elevated temperatures and low speed[J]. Tribology Letters, 2012, 48(3): 425–432. doi: 10.1007/s11249-012-0036-3

    [25]

    Li X, Zhang C H, Zhang S, et al. Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J]. Optics & Laser Technology, 2019, 114: 209–215. doi: 10.1016/j.optlastec.2019.02.001

    [26]

    Gao Qiushi, Yan Hua, Qin Yang, et al. Laser cladding Ti-Ni/TiN/TiW+TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy[J]. Optics & Laser Technology, 2019, 113: 182–191. doi: 10.1016/j.optlastec.2018.12.046

    [27]

    Zhang H, Zhang C H, Wang Q, et al. Effect of Ni content on stainless steel fabricated by laser melting deposition[J]. Optics & Laser Technology, 2018, 101: 363–371. doi: 10.1016/j.optlastec.2017.11.032

    [28]

    Yin Cunhong, Liang Yilong, Liang Yu, et al. Formation of a self-lubricating layer by oxidation and solid-state amorphization of nano-lamellar microstructures during dry sliding wear tests[J]. Acta Materialia, 2019, 166: 208–220. doi: 10.1016/j.actamat.2018.12.049

    [29]

    Jordanovová V, Losertová M, Štencek M, et al. Microstructure and properties of nanostructured coating on Ti6Al4V[J]. Materials, 2020, 13(3): 708. doi: 10.3390/ma13030708

    [30] 孙洋, 李文生, 胡伟, 等. 镍基自润滑涂层的摩擦学性能[J]. 摩擦学学报, 2018, 38(5): 562–569 doi: 10.16078/j.tribology.2018.05.009

    Sun Yang, Li Wensheng, Hu Wei, et al. Tribological performance of nickel-alloy matrix self-lubricating coatings[J]. Tribology, 2018, 38(5): 562–569 doi: 10.16078/j.tribology.2018.05.009

  • 期刊类型引用(7)

    1. 庄宿国,贺泊铭,刘秀波,张飞志,张诗怡,刘志远. Inconel718合金激光熔覆Co/TiN复合涂层摩擦学及氧化行为. 材料工程. 2024(03): 71-81 . 百度学术
    2. 陈辉,康嘉杰,于鹤龙,宋占永,王海斗. SPS制备铜基稀土发光复合材料的微观组织及摩擦学性能. 摩擦学学报(中英文). 2024(04): 460-469 . 百度学术
    3. 刘锡尧,秦乐佳,郭增飞,王叶,卢志伟. Ni基软硬复合涂层减摩耐磨性能研究. 摩擦学学报(中英文). 2024(11): 1479-1493 . 百度学术
    4. 贺泊铭,刘秀波,张诗怡,祝杨,张林. Inconel 718合金激光熔覆Stellite3/Ti_3SiC_2复合涂层摩擦学性能研究. 摩擦学学报. 2023(06): 606-615 . 本站查看
    5. 刘昊,高强,郜文鹏,刘秀波,郝敬宾,杨海峰. 激光熔覆CoCrFeNiNb_x高熵合金涂层的高温摩擦磨损性能. 摩擦学学报. 2022(05): 966-977 . 本站查看
    6. 王权,刘秀波,刘庆帅,王港,张诗怡,张林. 45#钢激光熔覆Ni60/Cu自润滑复合涂层组织演变及摩擦学性能. 中国表面工程. 2022(06): 232-243+256 . 百度学术
    7. 张诗怡,刘秀波,刘一帆,祝杨,张林,孟元,梁金. Ti6Al4V合金激光熔覆Co-Cu/Ti_3SiC_2复合涂层组织与摩擦学性能. 中国表面工程. 2021(06): 124-133 . 百度学术

    其他类型引用(6)

图(8)  /  表(5)
计量
  • 文章访问数:  1167
  • HTML全文浏览量:  360
  • PDF下载量:  86
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2020-09-27
  • 录用日期:  2020-10-15
  • 网络出版日期:  2021-05-23
  • 发布日期:  2021-05-27

目录

/

返回文章
返回
x 关闭 永久关闭