Effect of Displacement on Tangential Fretting Wear Characteristics of 690 Alloy Tube/ 405 Stainless Steel Plate
-
摘要: 采用自制的微动磨损试验机,开展了690合金管/405不锈钢的切向微动磨损试验,研究了位移幅值(15、30、80和200 μm)对其微动磨损特性的影响. 试验结果表明:当位移幅值改变时,微动运行状态会发生改变. 当位移幅值为15 μm时,微动状态为部分滑移区,此时摩擦系数最小,磨损率最低,微动损伤最轻微;当位移幅值为30 μm时,微动运行于混合区,摩擦系数明显高于部分滑移区;而当位移幅值为80和200 μm时,微动运行于完全滑移区,稳定阶段的摩擦系数与混合区的接近. 总体而言,随着位移幅值的增大,磨痕宽度增大,磨损加剧,磨损体积增加. 部分滑移区的磨损机制主要为黏着磨损和剥层,混合区主要的磨损机制为剥层,而完全滑移区的磨损机制主要为剥层磨损和磨粒磨损.Abstract: The tangential fretting wear tests of 690 alloy tube/405 stainless steel were carried by a self-designed fretting wear test rig. The effect of displacement (15 μm, 30 μm, 80 μm, 200 μm) on fretting wear characteristics has been investigated. With the increase of amplitude, fretting wear tests were running in partial slip regime (15 μm), mixed slip regime (30 μm) and gross slip regime (80 μm and 200 μm), respectively. The friction coefficient of partial slip regime was lower associated with slight damage, while the friction coefficient of mixed slip regime and gross slip regime were relatively higher. Additionally, the steady values of mixed slip regime and gross slip regime were almost same. Generally, with the increasing displacement, the width of wear scar and wear volume increased. The main wear mechanisms of partial slip regime were adhesion wear and delamination, while the main wear mechanisms of mixed slip regime was delamination. And the main wear mechanisms of gross slip regime were delamination and abrasive wear.
-
Keywords:
- 690 alloy tube /
- fretting wear /
- displacement /
- friction coefficient /
- wear mechanism
-
表 1 试验材料主要化学成分
Table 1 Main chemical compositions of the test material
Material Mass fraction/% Ni Cr Fe Al C Si Mn S P Inconel 690 ≥58 28.5~31 9~11 ≤0.4 0.015~0.025 ≤0.5 ≤0.5 ≤0.003 ≤0.015 405 SS ≤0.6 11.5~14.5 Bal. 0.1~0.3 ≤0.08 ≤1 ≤1 ≤0.03 ≤0.040 -
[1] 朱旻昊, 周仲荣. GCr15轴承钢的复合微动磨损行为研究[J]. 机械工程材料, 2003, 27(2): 10–13 doi: 10.3969/j.issn.1000-3738.2003.02.004 Zhu Minghao, Zhou Zhongrong. Composite fretting wear mechanism of GCr15 bearing steel[J]. Material of Mechanical Engneering, 2003, 27(2): 10–13 doi: 10.3969/j.issn.1000-3738.2003.02.004
[2] 朱旻昊, 李政, 周仲荣. 低碳钢的复合微动磨损特性研究[J]. 材料工程, 2004, (10): 12–15 doi: 10.3969/j.issn.1001-4381.2004.10.003 Zhu Minghao, Li Zheng, Zhou Zhongrong. Composite fretting wear of low carbon steel[J]. Material Engineering, 2004, (10): 12–15 doi: 10.3969/j.issn.1001-4381.2004.10.003
[3] 周仲荣, 罗唯力. 微动摩擦学的发展现状与趋势[J]. 摩擦学学报, 1997, 17(3): 272–280 doi: 10.3321/j.issn:1004-0595.1997.03.015 Zhou Zhongrong, Luo Weili. Recent development in fretting wear research[J]. Tribology, 1997, 17(3): 272–280 doi: 10.3321/j.issn:1004-0595.1997.03.015
[4] 唐辉. 世界核电设备与结构将长期面临的一个问题--微动损伤[J]. 核动力工程, 2000, 21(3): 221–226 doi: 10.3969/j.issn.0258-0926.2000.03.008 Tang Hui. Fretting damage, One of world-wide difficulties in the filed of nuclear power equipment and structures for a long-term[J]. Nuclear Power Engineering, 2000, 21(3): 221–226 doi: 10.3969/j.issn.0258-0926.2000.03.008
[5] 丁训慎. 蒸汽发生器传热管的微振磨损及其防护[J]. 核安全, 2006, (3): 31–6 doi: 10.16432/j.cnki.1672-5360.2006.03.007 Ding Xunshen. Fretting wear and protection of steam generator tubes[J]. Nuclear Safety, 2006, (3): 31–6 doi: 10.16432/j.cnki.1672-5360.2006.03.007
[6] Lee Y H, Kim H K, Kin H D, et al. A comparative study on the fretting wear of steam generator tubes in korean power plants[J]. Wear, 2003, 255(7−12): 1198–1208. doi: 10.1016/S0043-1648(03)00147-9
[7] Jeong S H, Cho C W, Lee Y Z. Friction and wear of Inconel 690 for steam generator tube in elevated temperature water under fretting condition[J]. Tribology International, 2005, 38(3): 283–288. doi: 10.1016/j.triboint.2004.08.012
[8] Jeung H K, Chung I S, Yoon D H, et al. A study on fretting fatigue characteristics of Inconel 690 at high temperature[J]. Tribology International, 2011, 44(11): 1483–1487. doi: 10.1016/j.triboint.2010.11.006
[9] Park D K, Woo S W, Yoon D H, et al. A study on fretting fatigue life for the Inconel alloy 600 at high temperature[J]. Nuclear Engineering and Design, 2010, 240(10): 2521–2527. doi: 10.1016/j.nucengdes.2010.05.013
[10] Mi X, Wang W X, Xiong X M, et al. Investigation of fretting wear behavior of Inconel 690 alloy in tube/plate contact configuration[J]. Wear, 2015, 328-329: 582–590. doi: 10.1016/j.wear.2015.04.003
[11] Mi X, Cai Z B, Xiong X M, et al. Investigation on fretting wear behavior of 690 alloy in water under various temperatures[J]. Tribology International, 2016, 100: 400–409. doi: 10.1016/j.triboint.2016.05.012
[12] 王文秀, 蔡振兵, 钱浩, 等. 不同温度下690合金传热管与抗振条的微动磨损特性[J]. 中国有色金属学报, 2014, (11): 85–91 doi: 10.19476/j.ysxb.1004.0609.2014.11.011 Wang Wenxiu, Cai Zhenbing, Qian Hao, et al. Fretting wear behavior of alloy 690 heat transfer tubes against anti-vibration strip at different temperatures[J]. The Chinese Journal of Nonferrous Metals, 2014, (11): 85–91 doi: 10.19476/j.ysxb.1004.0609.2014.11.011
[13] 米雪, 谢海, 彭金方, 等. 690合金传热管在不同摩擦副条件下的微动磨损性能研究[J]. 摩擦学学报, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199 Mi Xue, Xie Hai, Peng Jinfang, et al. The effect of mating material on the fretting wear behavior of 690 alloy[J]. Tribology, 2020, 40(3): 314–321 doi: 10.16078/j.tribology.2019199
[14] Guo X, Lai P, Tang L, et al. Fretting wear of alloy 690 tube mated with different materials in high temperature water[J]. Wear, 2018, 400-401: 119–126. doi: 10.1016/j.wear.2018.01.001
[15] 辛龙, 李杰, 陆永浩, 等. Inconel690合金高温微动磨损特性研究[J]. 摩擦学学报, 2015, 35(4): 470–476 Xin Long, Li Jie, Lu Yonghao, et al. Fretting wear properties of Inconel 690 alloy at elevated temperature[J]. Tribology, 2015, 35(4): 470–476
[16] 李杰, 陆永浩. 位移幅值对 Inconel600合金微动磨损性能和机制的影响[J]. 北京科技大学学报, 2014, (10): 1328–1334 doi: 10.13374/j.issn1001-053x.2014.10.008 Li Jie, Lu Yonghao. Displacement amplitude effect on the fretting wear behavior and mechanism of Inconel 600 alloys[J]. Journal of University of Science and Technology, 2014, (10): 1328–1334 doi: 10.13374/j.issn1001-053x.2014.10.008
[17] 朱旻昊. 径向与复合微动的运行和损伤机理研究[D]. 成都: 西南交通大学, 2001 Zhu Minhao. Investigations on the running and damage mechanisms of radial and composite fretting[D]. Chengdu: Southwest Jiaotong University, 2001(in Chinese)
[18] 王梦婕, 彭金方, 庄文华, 等. 碳纤维切向微动磨损特性研究[J]. 摩擦学学报, 2019, 39(3): 330–339 doi: 10.16078/j.tribology.2018168 Wang Mengjie, Peng Jinfang, Zhuang Wenhua, et al. Fretting wear damage characteristics of carbon fiber[J]. Tribology, 2019, 39(3): 330–339 doi: 10.16078/j.tribology.2018168
[19] 蔡振兵, 杨莎, 林修洲, 等. 扭动微动条件下含水气氛对氧化行为的影响[J]. 摩擦学学报, 2010, 30(6): 527–531 doi: 10.16078/j.tribology.2010.06.006 Cai Zhenbing, Yang Sha, Lin Xiuzhou, et al. Oxidation behavior in different humid environments induced by torsional fretting wear[J]. Tribology, 2010, 30(6): 527–531 doi: 10.16078/j.tribology.2010.06.006
-
期刊类型引用(8)
1. 龙有红,任岩平,何添,李洪洋,彭金方,朱旻昊. 31CrMoV9钢离子渗氮层的微动摩擦磨损特性研究. 摩擦学学报(中英文). 2024(05): 633-643 . 百度学术
2. 陈闰洛,叶锦淼,郑磊,徐阳锋,林韩波,谢林君. 核电用Inconel 690合金管微动磨损损伤机理研究. 材料工程. 2024(11): 150-157 . 百度学术
3. 徐志彪,李德香,王忠,鲁志杰,张俊,刘卫东,彭金方. Inconel 718激光熔覆合金层切向微动磨损特性研究. 摩擦学学报. 2023(05): 517-527 . 本站查看
4. 谭蔚,田策. 完全滑移区690TT合金管微动磨损特性研究. 天津大学学报(自然科学与工程技术版). 2022(09): 895-902 . 百度学术
5. 王剑飞,薛伟海,高禩洋,赵智超,段德莉,李曙. 磨屑对TC4钛合金微动磨损行为的影响. 摩擦学学报. 2022(05): 1012-1023 . 本站查看
6. 林韩波,唐力晨,钱浩,陈闰洛,王昌训,谢林君. 核电690合金传热管微动疲劳试验及损伤机理分析. 摩擦学学报. 2022(05): 954-965 . 本站查看
7. 郝欣妮,贺凯林,张翔,高艳. 40CrNiMoA钢花键轴磨损的失效分析. 内燃机与配件. 2022(22): 73-75 . 百度学术
8. 刘宇,谯建春,李明生,亓伟. 位移幅值对ZG230-450铸钢微动磨损行为的影响. 机械工程材料. 2021(07): 46-50 . 百度学术
其他类型引用(7)