High Temperature Friction and Wear Property of Hot Stamping Tool Steel SDCM
-
摘要: 为了研究新型热冲压模具材料SDCM钢的高温摩擦磨损性能,对比国外优质热作模具材料CR7V钢,利用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射分析(XRD),UMT-3型高温摩擦磨损试验机以及Bruker白光轮廓仪等手段研究了新型热冲压模具钢SDCM热处理后组织状态、抗氧化性能以及不同温度高温摩擦磨损后磨痕形貌、截面形貌、表面物相。结果表明:不同温度下SDCM钢磨损机制差异明显,100℃时,材料主要为黏着磨损,经过300℃、500℃轻微氧化磨损与黏着磨损共存的阶段后,700℃时,磨损机制转变为氧化磨损;在100~400℃范围内,CR7V由于含有更多的M23C6型和M7C3型碳化物(分别占总碳化物的3.4%和12.7%),因而具有较高的耐磨性;500~700℃范围内,SDCM因具有更高的抗回火软化能力;同时Cr元素含量较少,抗氧化能力较弱,能够及时形成摩擦氧化层,作为“润滑剂”,提高材料的耐磨性。Abstract: The high temperature friction and wear properties of a new kind of hot stamping die material, SDCM steel, were investigated on a UMT-3 high temperature friction and wear tester using a high quality hot work die material, CR7V steel, as a benchmark. The microstructure and oxidation resistance of SDCM after heat treatment, morphologies and composition of the worn surface and cross-sectioned worn surface at eldevatd temperature were determined by using scanning electron microscope, transmission electron microscopy, X-ray diffraction analysis, Bruker white light scanning profiler. Results indicate that wear mechanisms of SDCM steel were different at elevated temperature. Adhesive wear dominated at 100℃. Mild oxidation wear and adhesive wear were observed at 300℃ and 500℃. The dominate wear mechanism was oxidation wear at 700℃. At temperatures from 100℃ to 400℃, CR7V exhibited high wear resistance due to the presence of M23C6 and M7C3 carbide, which were for 3.4% and 12.7% of the total carbide, respectively. From 500℃ to 700℃, SDCM had high resistance to temper softening. In addition, it had poor resistance to oxidation because of the low quantity of Cr. As the result, the tribo-oxide layer on the worn surface acted as a "lubricant" and responsible for the high wear resistance of material at 700℃.
-
-
[1] H Karbasian, A E Tekkaya. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210: 2103–2188.
[2] 蒋峥嵘. 高强度钢板热冲压工艺研究及有限元分析[D]. 重庆: 重庆大学, 2011. Jiang Zhengrong. Hot stamping process research and FEA of high strength steel[D]. Chongqing: Chongqing University, 2011.
[3] 姜超, 单忠德, 庄百亮, 等. 热冲压成形22MnB5钢板的组织与性能[J]. 材料热处理学报, 2012, 33: 78–81. Jiang Chao, Shan Zhongde, Zhuang Bailiang, et al. Microstructure and properties of hot stamping 22MnB5 steel[J]. Transactions of Materials and Heat Treatment, 2012, 33: 78–81.
[4] A Ghiotti, F Sgarabotto, S Bruschi. A novel approach to wear testing in hot stamping of high strength boron steel sheets[J]. Wear, 2013, 302: 1319–1326.
[5] Quinn T F J. Oxidational wear[J]. Wear, 1971, 18 (5): 413–419.
[6] R Wilson. Metallurgy and heat treatment of tool steels[M]. London: McGraw-Hill, 1975.
[7] H K D H Bhadeshia, R W K Honeycombe. Steels: microstructure and properties[M]. London: Third Editon, Elsevier, 2006.
[8] A Sundström, J Rendon, M Olsson. Wear behavior of some low alloyed steels under combined impact/abrasion contact conditions[J]. Wear, 2001, 250: 744–754.
[9] Suh NP. The delamination theory of wear[J]. Wear, 1973, 25: 111–124.
[10] S Hernandez, J Hardell, H Winkelmann, et al. Influence of temperature on abrasive wear of boron steel and hot forming tool steels[J]. Wear, 2015, 338–339: 27–35.
[11] Quinn TFJ. Oxidational wear[J]. Wear, 1971, 18: 413–419.
[12] 崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社, 2007. Cui Zhongqi. Metallography and heat treatment[M]. Beijing: China Machine Press, 2007.
[13] 潘金芝, 任瑞铭, 戚正风. 国内外模具钢发展现状[J]. 金属热处理, 2008, 3(8): 10–15. Pan Jinzhi, Ren Ruiming, Qi Zhengfeng. Development status of model steels at home and abroad [J]. Heat Treatment of Metals, 2008, 33(8): 10–15.
[14] 杜永泽, 陈再枝. 钒含量对D2模具钢耐磨性的影响[J]. 钢铁研究学报, 1997, 9 (增刊): 62–67. Du Yongze, Chen Zaizhi. Effects of the vanadium content on wear ability of D2 die steel[J]. Journal of Iron and Steel Research, 1997, 9 (Suppl): 62–67.
[15] 李晨辉, 吴晓春, 谢尘, 等. Cr8型模具钢耐磨性能研究[J]. 摩擦学学报, 2013, 33(1): 35–43. Li Chenhui, Wu Xiaochun, Xie Chen, et al. Investigation on wear resistance of Cr8 tool steels[J]. Tribology, 2013, 33(1): 35–43.
[16] Wang S Q, Wei M X, Wang F, et al. Transition of elevated-temperature wear mechanisms and the oxidative delamination wear in hot-working die steels[J]. Tribology International, 2010, 43: 577–584.
[17] 王小军, 徐明纲, 陈秋龙, 等. 热作模具钢QRO90与8407回火稳定性对比研究[J]. 上海金属, 1998, 20(2): 8–11. Wang Xiaojun, Xu Minggang, Chen Qiulong, et al. Research on the tempering stability of die steel for hot working: QRO90 and 8407(H13)[J]. Shanghai Metals, 1998, 20(2): 8–11.
-
期刊类型引用(13)
1. 牛童,王昕宇,彭睿智,吴晓春. 喷丸对4Cr5Mo2V钢高温摩擦磨损性能的影响. 机械工程材料. 2024(03): 50-56 . 百度学术
2. 苏宁,杨航,白植雄,曾艳. 奥氏体型热作模具钢于750℃下高温摩擦磨损性能研究. 热加工工艺. 2024(21): 114-119+124 . 百度学术
3. 杨柳,谢奕心,鞠玉琳,魏琪,曹甫洋,罗锐,袁志钟,程晓农. 贝氏体等温淬火对Dievar热作模具钢高温摩擦磨损性能的影响. 金属热处理. 2023(02): 85-93 . 百度学术
4. 周百航,左鹏鹏,吴晓春. 淬火温度和回火工艺对4Cr5Mo2V钢高温耐磨性能的影响. 机械工程材料. 2023(04): 67-73 . 百度学术
5. 周健,欧阳伟豪,方峰,廖俊,马志俊. Nb对H13钢高温摩擦磨损性能的影响. 材料热处理学报. 2023(10): 155-164 . 百度学术
6. 刘义,胡晏明. 载荷和温度对H13钢摩擦磨损性能的影响. 热加工工艺. 2020(09): 89-91 . 百度学术
7. 李爽,时彦林,杨晓彩,石永亮,王真,张士宪,施渊吉,吴晓春. 钼钨钒合金化热作模具钢高温回火组织演变. 工程科学学报. 2020(07): 902-911 . 百度学术
8. 张珂珉,周杰,张盟盟,刘雪飞,赵勇. 热成形模具铁基合金耐磨层磨损性能研究. 热加工工艺. 2020(18): 81-85 . 百度学术
9. 白植雄,左鹏鹏,计杰,吴晓春. 两种热作模具钢的高温摩擦磨损性能. 工程科学学报. 2019(07): 906-913 . 百度学术
10. 蒋斌,吴晓春. 热冲模零件摩擦磨损行为研究. 模具工业. 2019(12): 1-6+11 . 百度学术
11. 吴斌斌,林建平,马治军,刘亿,郭水军. Al-Si镀层硼钢板热冲压模具磨损失效分析. 锻压技术. 2018(01): 110-116 . 百度学术
12. 吴博雅,吴晓春. 热冲压概述与变强度热冲压技术的诞生. 模具制造. 2017(05): 93-98 . 百度学术
13. 王春涛,白植雄,贾永闯,左鹏鹏,吴晓春. 热冲压模具钢发展现状与趋势. 模具制造. 2017(09): 93-97 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 1584
- HTML全文浏览量: 10
- PDF下载量: 791
- 被引次数: 27