ISSN   1004-0595

CN  62-1224/O4

高级检索

超导磁力与静压液膜力复合轴承的静动特性分析

陈润霖, 许吉敏, 卫洋洋, 袁小阳

陈润霖, 许吉敏, 卫洋洋, 袁小阳. 超导磁力与静压液膜力复合轴承的静动特性分析[J]. 摩擦学学报, 2016, 36(5): 531-537. DOI: 10.16078/j.tribology.2016.05.001
引用本文: 陈润霖, 许吉敏, 卫洋洋, 袁小阳. 超导磁力与静压液膜力复合轴承的静动特性分析[J]. 摩擦学学报, 2016, 36(5): 531-537. DOI: 10.16078/j.tribology.2016.05.001
CHEN Runlin, XU Jimin, WEI Yangyang, YUAN Xiaoyang. Static and Dynamic Characteristics of Superconducting Magnetic Force and Hydrostatic Fluid Film Force Compound Bearings[J]. TRIBOLOGY, 2016, 36(5): 531-537. DOI: 10.16078/j.tribology.2016.05.001
Citation: CHEN Runlin, XU Jimin, WEI Yangyang, YUAN Xiaoyang. Static and Dynamic Characteristics of Superconducting Magnetic Force and Hydrostatic Fluid Film Force Compound Bearings[J]. TRIBOLOGY, 2016, 36(5): 531-537. DOI: 10.16078/j.tribology.2016.05.001
陈润霖, 许吉敏, 卫洋洋, 袁小阳. 超导磁力与静压液膜力复合轴承的静动特性分析[J]. 摩擦学学报, 2016, 36(5): 531-537. CSTR: 32261.14.j.tribology.2016.05.001
引用本文: 陈润霖, 许吉敏, 卫洋洋, 袁小阳. 超导磁力与静压液膜力复合轴承的静动特性分析[J]. 摩擦学学报, 2016, 36(5): 531-537. CSTR: 32261.14.j.tribology.2016.05.001
CHEN Runlin, XU Jimin, WEI Yangyang, YUAN Xiaoyang. Static and Dynamic Characteristics of Superconducting Magnetic Force and Hydrostatic Fluid Film Force Compound Bearings[J]. TRIBOLOGY, 2016, 36(5): 531-537. CSTR: 32261.14.j.tribology.2016.05.001
Citation: CHEN Runlin, XU Jimin, WEI Yangyang, YUAN Xiaoyang. Static and Dynamic Characteristics of Superconducting Magnetic Force and Hydrostatic Fluid Film Force Compound Bearings[J]. TRIBOLOGY, 2016, 36(5): 531-537. CSTR: 32261.14.j.tribology.2016.05.001

超导磁力与静压液膜力复合轴承的静动特性分析

基金项目: 

国家自然科学基金面上项目(51175408)资助。

详细信息
  • 中图分类号: TH133.3

Static and Dynamic Characteristics of Superconducting Magnetic Force and Hydrostatic Fluid Film Force Compound Bearings

  • 摘要: 以新一代液体火箭发动机涡轮泵为应用前景,提出了一种带小孔节流的超导-液体静压复合推力轴承。该复合轴承由6块圆形超导瓦和6块带有小孔节流的圆形液体静压推力瓦构成,依靠涡轮泵系统自带的低温介质(如液氢液氧等),可以实现超导磁斥力与流体静压力的复合。基于解耦方法分析了复合轴承的静动特性,重点研究不同液膜厚度下复合轴承的承载力和刚度随节流孔径、液腔直径等的变化规律。在设计工作点附近,超导推力瓦和静压推力瓦的承载力大体相当,而后者的刚度则是前者的300倍以上。理论结果表明该复合结构既可以保证启动阶段无接触摩擦,又能在工作阶段保持较高刚度以抗冲击,对设计高可靠性火箭涡轮泵的轴系结构具有参考价值。
    Abstract: This paper took the new generation of liquid rocket engine turbo pump as the application prospect. In order to resolve the status that the reliability of the mechanical contact type bearings can't be guaranteed, the YBCO superconducting circular pad was introduced with the basis of existing fluid lubrication thrust bearings, and a kind of thrust bearing composited by superconducting magnetic force and hydrostatic fluid film force was proposed. This compound bearing was constituted of six superconducting circular pads and six liquid circular thrust pads with orifice restrictor, which were uniformly and alternately arranged on the bearing seat. With the support of cryogenic medium (such as liquid hydrogen and oxygen) in the rocket turbine pump, the recombination of superconductive repulsive force and liquid hydrostatic pressure was realized. Because of the weak coupling property between hydrostatic pressure and superconducting magnetic force, the bearing characteristics of the compound bearing were analyzed based on the decoupled analysis method. The performance of composite bearing was obtained by superposition with separated bearing characteristics of superconducting bearing and fluid bearing. The influence of structure parameters on the bearing capacity and stiffness were studied, e.g. throttle diameter, fluid cavity diameter. Around the designed working point, the carrying capacity of superconducting thrust pads and fluid lubrication thrust pads were almost equal, and the stiffness of the latter was 300 times higher than the former. The theoretical result shows that this compound bearing can avoid the contact friction in the start and stop process of turbo pump, but also maintain a high stiffness in the working stage to resist impact load. The research of this paper has reference value for the design of high reliability shafting structure of high speed rocket turbine pump.
  • [1]

    J G Bednorz and K A Muller. Possible High Tc superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift für Physik B, 1986, 64(2): 189–193.

    [2]

    Chu C W, Hor P H, Meng R L, et al. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system[J]. Science, 1987, 235(4788): 567–569.

    [3]

    Zhao Z X, Chen L Q, Cui C G, et al. Superconductivity above liquid nitrogen temperature in new oxide systems[J]. Science Bulletin, 1987, 32(16): 1098–1102.

    [4]

    R L Peterson. Space applications of superconductivity: instrumentation for gravitational and related studies[J]. Cryogenics, 1980, 20(6): 299–306.

    [5]

    Quansheng S Shu, Guangfeng F Cheng, Joseph Susta, et al. A six-meter long prototype of the mag-lev cryogen transfer line[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2297–2300.

    [6] 苗旭升, 李斌, 黄智勇. 发动机涡轮泵流体动静压轴承应用分析[J]. 火箭推进, 2004, 30(6): 1–4.

    Miao Xusheng, Li Bin, Huang Zhiyong. Application analysis of liquid hybrid bearing for engine turbopump[J]. Journal of Rocket Propulsion, 2004, 30(6): 1–4 .

    [7] 章本立. 高速涡轮泵的若干问题[J]. 宇航学报, 1983, (6): 81–90.

    Zhang Benli. Some problems in high speed turbopump[J]. Journal of Astronautics, 1983, (6): 81–90 .

    [8]

    T Ohta, A Kitamura. H Ogata. LH2 turbopump test with hydrostatic bearing[C]. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1999.

    [9]

    E Edeline, P Fayolle, P Fonteyn, M Frocot. Development and testing of a fluid-film bearing LH2 turbopump demonstrator[C]. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004.

    [10]

    N P Hannum, C E Nielson. The performance and application of high speed long life hybrid bearings for reusable rocket engine turbomachinery[C]. 19th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1983.

    [11]

    R Decher, P N Peter, R C Sisk, et al. High temperature superconducting bearing for rocket engine[J]. Applied Superconductivity, 1993, 1(7–9): 1265–1278.

    [12]

    Dantam K Rao. Cryostatless high temperature super current bearings for rocket engine turbopump[R]. NASA Marshall space flight center, 1989.

    [13]

    H Walter, J Bock, Ch Frohne, et al. First heavy load bearing for industrial application with shaft loads up to 10 kN[R]. Journal of Physics, 2006, (43): 995–998.

    [14]

    R L Meng, C Kinalids, Y Y Sun, et al. Manufacture of bulk superconducting YBa2Cu3O7-d by a continuous process[J]. Nature, 1990, (345): 326–328.

    [15]

    N Ogawa, I Hirabayashi, S Tanaka. Preparation of a high-Jc YBCO bulk superconductor by the platinum dopted melt growth method[J]. Physica C: Superconductivity and its Applications, 1991, 177: 101–105.

    [16]

    C Cai, H Mori, H Fujimoto, et al. Crystal growth patterns in MgO seeded Y1.8Ba2.4Cu3.4Oy/Ag melt-texturing process[J]. Physica C: Superconductivity and its Applications, 2001, 357: 734–737.

    [17]

    Hiroyuki Fujimoto, Huanbing Cai, Emi Ohtabara. Sm-Ba-Cu-O bulk superconductors melt-processed in air[J]. Physica C: Superconductivity and its Applications, 2002, 372: 1111–1114.

    [18]

    Jimin Xu, Runlin Chen, Honglun Hong, et al. Static characteristics of high-temperature superconductor and hydrodynamic fluid-film compound bearing for rocket engine[J]. IEEE Trans Appl Supercond, 2015, 25(6): 3601908–3601915.

    [19]

    Jimin Xu, Xiaoyang Yuan, Cuiping Zhang, et al. Dynamic characteristics of high temperature superconductor and hydrodynamic fluid film compound bearing for rocket engine[C]. Lyon: 12th European Conference on Applied Superconductivity, 2015, EUCAS-15_3A-LS-P-04.02.

    [20]

    Zeguang Dong, Ye Ding, Pinkuan Liu, et al. On the analysis of aerostatic thrust bearings with the differential quadrature method. Proc IMEchE Part J: Journal of Engineering Tribology, 2014, 228(2): 232–240.

    [21]

    Powell JW. Design of aerostatic bearings[M]. London: Machinery Publishing, 1970.

    [22] 杨培基, 袁小阳, 苏卫民, 等. 高速涡轮泵动静压轴承新型长小孔节流器的试验建模[J]. 机械科学与技术, 2012, 31(11): 1831–1834, 1840.

    Yang Peiji, Yuan Xiaoyang, Su Weimin, et al. Experimental modeling of new long orifice-type restrictor of high speed turbine hybrid bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(11): 1831–1834+1840 .

    [23] 钟洪, 张冠坤. 液体静压动静压轴承设计使用手册[M]. 电子工业出版社, 2007: 38–40.

    Zhong Hong,Zhang Guankun. Design manual of hydrostatic and hybrid bearings[M]. Electronic Industry Press, 2007: 38–40 .

  • 期刊类型引用(5)

    1. 陈丽文,尚林,高殿荣,赵建华,吴晓晨. 径向磁液轴承定子温升及热变形研究. 机床与液压. 2024(13): 27-36 . 百度学术
    2. 陈丽文,赵建华,赵计胜,吴晓晨,崔冰艳,杨中原. 径向磁液轴承的转子散热规律研究. 机床与液压. 2023(22): 25-30 . 百度学术
    3. 李哲,欧阳武,汪盛通,何涛,王斌. 船舶新型水润滑磁液双浮尾轴承承载能力仿真研究. 船舶力学. 2022(09): 1326-1334 . 百度学术
    4. Jimin Xu,Changhuan Li,Xusheng Miao,Cuiping Zhang,Xiaoyang Yuan. An Overview of Bearing Candidates for the Next Generation of Reusable Liquid Rocket Turbopumps. Chinese Journal of Mechanical Engineering. 2020(02): 51-63 . 必应学术
    5. 闫岗,金英泽,陈晖,苗旭升,金路,许吉敏,袁小阳. 超导可倾瓦磁液复合轴承的动力学特性分析. 西安交通大学学报. 2020(11): 65-73 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  1534
  • HTML全文浏览量:  8
  • PDF下载量:  592
  • 被引次数: 23
出版历程
  • 收稿日期:  2015-12-21
  • 修回日期:  2016-04-10
  • 发布日期:  2016-10-10

目录

    /

    返回文章
    返回
    x 关闭 永久关闭