An Approximate Solution Method for Nonlinear Oil Film Forces of Finite Length Journal Sliding Bearing
-
摘要: 本文中提出了一种求解有限长径向滑动轴承非线性油膜力的近似解析方法. 在滑动轴承-转子系统非线性动力行为分析中, 油膜力计算模型通常采用“π”油膜假设, 但是, 实际工况中油膜的存在区域并非是“π”区域, 运行时油膜中出现气穴, 破裂成条纹状(即具有Reynolds边界条件). 本文中的近似解析方法采用Reynolds边界条件, 基于变分原理, 运用分离变量法求解油膜的压力分布, 其中油膜压力的周向分离函数通过无限长轴承的油膜压力分布获得, 油膜的破裂终止位置角通过连续条件确定, 轴向分离函数运用变分原理并结合周向函数求得. 计算结果表明: 本文中提出的方法和有限元方法的结果吻合得很好. 在此基础上, 分析了一些轴承参数对油膜压力分布的影响.Abstract: An approximate analytical method is proposed for calculating nonlinear oil film forces of finite length journal sliding bearing. The dynamic “π” oil film assumption is usually taken to determine nonlinear oil film forces in the dynamic analysis of hydrodynamic journal bearing-rotor system. In practice, oil film usually ruptures, and then cavitation arises, cavitaion of oil film results in Reynolds boundary conditions, i.e., oil film field is not “π” zone in the lubrication. In this paper, based on the variational principle, the method of separation of variables was employed to obtain the pressure distribution with Reynolds boundary conditions. The pressure distribution of infinite long journal bearing model was taken as a circumferential separable function of the pressure distribution. The termination positions of oil film in circumferential direction were determined by using the continuity condition. The axial separable function of the pressure distribution was obtained by the variational principle and the circumferential separable function. The results calculated by the proposed method were in good agreement with the oil film forces by the finite element method. Meanwhile, the influence of the bearing parameters on the pressure distribution was also analyzed.
-
-
[1] Wang L G, Cao D, Huang W H. Nonlinear coupled dynamics of flexible blade-rotor-bearing systems[J]. Tribology International, 2010, 43(4): 759-778.
[2] Castroa H F, Cavalca K L, Nordmann R. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model[J]. Journal of Sound and Vibration, 2008, 317(1-2): 273-293.
[3] Xie W H, Tang Y G, Chen Y S. Analysis of motion stability of the flexible rotor-bearing system with two unbalanced disks[J]. Journal of Sound and Vibration, 2008, 310(1-2): 381-393.
[4] Jing J P, Meng G, Sun Y, et al. On the non-linear dynamic behavior of a rotor-bearing system[J]. Journal of Sound and Vibration, 2004, 274(3-5): 1031-1044.
[5] Wang J G, Zhou J Z, Dong D W, et al. Nonlinear dynamic analysis of arub-impact rotor supported by oil film bearings[J]. Archive of Applied Mechanics, 2013, 83(3): 413-430.
[6] Wang J K, Khonsari M M. Bifurcation analysis of a flexibe rotor supported by two fluid-film journal bearings[J]. ASME Journal of Tribology, 2006, 128(3): 594-603.
[7] Li D X, Xu J X. A method to determine the periodic solution of the non-linear dynamics system[J]. Journal of Sound and Vibration, 2004, 275(1-2): 1-16.
[8] Chang J C W. Non-linear dynamic analysis of dual flexible rotors supported by the long journal bearings[J]. Mechanism and Machine Theory, 2010, 45(6): 844-866.
[9] Wang J K, Khonsari M M. Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal bearings, part I: analytical solutions and static performance[J]. Tribology International, 2008, 41(2): 119-131.
[10] Wang J K, Khonsari M M. Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal bearings, part II: nonlinear instability analysis[J]. Tribology International, 2008, 41(2): 132-140.
[11] [秦平, 孟志强, 朱均. 滑动轴承非线性油膜力的神经网络模型[J]. 摩擦学学报, 2002, 22(3): 226-231. Qin Ping, Meng Zhiqiang, Zhu Jun. BP network model for nonlinear oil-film force on hydrodynamic bearing[J]. Tribology, 2002, 22(3): 226-231.
[12] Zheng T S, Yang S H, Xiao Z H, et al. A ritz model of unsteady oil-film forces for nonlinear dynamic rotor-bearing system[J]. ASME Journal of Applied Mechanics, 2004, 71(2): 219-224.
[13] Xiao Z H, Wang L P, Zheng T S. An efficient algorithm for fluid force and its jacobian matrix in journal bearing[J]. ASME Journal of Tribology, 2006, 128(2): 291-295.
[14] Lu Y J, Ji L F, Zhang Y F, et al. Dynamic behaviours of the rotor non-linear system with fixed-tilting-pad journal bearings support[J]. IMechE Part J: Journal of Engineering Tribology, 2010, 224(10): 1037-1047.
[15] Hei Di, Lu Y J, Zhang Y F, et al. Nonlinear dynamic behaviors of a rod fastening rotor supported by fixed-tilting pad journal bearings[J]. Chaos, Solitons and Fractals, 2014, 69: 129-150.
[16] [孟志强, 张功学, 朱均, 等. 一种滑动轴承非线性油膜力变分近似计算方法[J]. 摩擦学学报, 2003, 23(2): 141-144. Meng Zhiqiang, Zhang Gongxue, Zhu Jun, et al. A approximate variational approach of non-linear oil film force of hydrodynamic bearing[J]. Tribology, 2003, 23(2): 141-144.
[17] Vignolo G G, Barilá D O, Quinzani L M. Approximate analytical solution to Reynolds equation for finite length journal bearings[J]. Tribology International, 2011, 44(10): 1089-1099.
[18] Bastani Y, Queiroz M D. A new analytic approximation for the hydrodynamic forces in finite-length journal bearings[J]. ASME Journal of Tribology, 2010, 132(1): 014502-1-9.
[19] Sfyris D, Chasalevris A. An exact analytical solution of the Reynolds equation for the finite journal bearing lubrication[J]. Tribology International, 2012, 55: 46-58.
[20] Zhang Y F, Wu Peng, Guo Bo, et al. Approximate solution of oil film load-carrying capacity of turbulent journal bearing with couple stress flow[J]. Chinese Journal of Mechanical Engineering, 2015, 28(1): 106-114.
-
期刊类型引用(8)
1. 李铮,李冰,高宇星,苏来博,徐武彬. 农用旋转机械圆度误差稳定性影响研究. 南方农机. 2023(13): 1-4 . 百度学术
2. 张毅,王伟,魏道高,王刚,许吉敏,刘焜. 高速涡轮增压器轴承-转子系统不平衡响应及稳定性分析. 摩擦学学报. 2022(03): 620-631 . 本站查看
3. 耿煜,郭振,陈渭. 考虑空穴效应的广义特征分解法解雷诺方程. 西安交通大学学报. 2021(03): 109-116 . 百度学术
4. 纪敬虎,周莹超,田朋霖,陈天阳,何玉洋. 局部凹坑织构化径向滑动轴承流体动力润滑数值分析. 表面技术. 2021(10): 214-220+278 . 百度学术
5. 黑棣,郑美茹. 基于温粘效应滑动轴承润滑特性分析. 太原科技大学学报. 2020(02): 135-142 . 百度学术
6. 赵新泽,彭文昱,徐翔,王骁鹏. 结构参数对滑动轴承润滑性能的影响. 机械设计与制造. 2018(07): 214-217 . 百度学术
7. 张永芳,张伟,党超,李贤伟,李莎,吕延军. 轴向槽动压滑动轴承非线性油膜力解析模型. 摩擦学学报. 2018(02): 220-228 . 本站查看
8. 吴秋平,沈俊,鲁玉龙,王雷,陈续扬,常勇. 液体动压滑动轴承油膜静特性计算及其仿真. 水泥工程. 2017(06): 14-17 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 1619
- HTML全文浏览量: 13
- PDF下载量: 571
- 被引次数: 13