-
摘要: 采用直流磁控溅射与高功率磁脉冲磁控溅射制备了以Ti为过渡层的MoS2/C复合薄膜,并对其结构、组分、力学性能以及摩擦学行为进行了研究. 摩擦测试结果表明:载荷增加时,摩擦系数与磨损率呈规律性降低趋势;通过赫兹接触模型对平均摩擦系数进行分析拟合,发现载荷的变化带来赫兹接触面积与接触压强的不同,导致了摩擦系数的变化;通过对摩擦产物的拉曼光谱分析发现不同载荷对非晶碳石墨化程度影响不明显;借助透射电子显微镜对转移膜的微结构进行分析,发现转移膜主要是排列有序且基面平行于滑移界面的MoS2层,使其在较高载荷下仍具有低的剪切强度,因而获得低的摩擦系数. 进一步采用同一磨球、磨痕体系从高载荷到低载荷变化的连续摩擦验证式试验,可以得出,MoS2/C复合薄膜在所有高载荷条件下获得低摩擦系数,赫兹接触起着主导作用.
-
关键词:
- MoS2/C复合薄膜 /
- 载荷 /
- 赫兹接触 /
- 摩擦产物
Abstract: MoS2/C composite films with Ti interlayer were prepared by direct current magnetron sputtering and high power impulse magnetron sputtering, and the structure, composition and mechanical properties were characterized. The tribological tests were carried out on a ball-on-disc tribometer, and results show that the friction coefficient and the wear rate decreased regularly with an increasing load. The average friction coefficient was analyzed and fitted by Hertzian contact model, combined with the wear tracks and wear scars observed by scanning electron microscopy. It is found that the change in load resulted in a difference of the Hertzian contact area and the Hertzian contact pressure, which led to the change of the friction coefficient. Wear products detected by Raman spectroscopy showed that different loads did not cause the different graphitization degree of amorphous carbon. Microstructure of the transfer film analyzed by transmission electron microscopy showed that the transfer film was finely-aligned MoS2 with basal plane in parallel to the shearing direction, which had a lower shear strength at higher loads and thus resulted in a low coefficient of friction. Based on the results of the experimental verification with the loads varied from high to low in the same tribological conditions, it can be concluded Hertzian contact accounted for a low coefficient of friction at high loads.-
Keywords:
- MoS2/C composite films /
- load /
- Hertzian contact /
- wear products
-
表 1 MoS2/C复合薄膜沉积工艺参数
Table 1 Deposition process parameters of MoS2/C composite film
Procedure Ar flow/sccm Bias/V Parameters of HiPIMS Time/min Etching 80 –350 20 Ti Layer 50 –200 DC: 1 A,PW: 200 μs PV: 750 V,PF: 100 Hz 20 MoS2/C/Ti 50 –200 DC: 1 A,PW: 200 μs PV: 750 V,PF: 100 Hz 5 MoS2/C 50 –200 DC: 1 A 180 表 2 MoS2/C复合薄膜的组分及其力学性能
Table 2 The composition and mechanical properties of MoS2/C composite film
Sample Atomic fraction/% S/Mo ratio Elastic Modulus/GPa Hardness/GPa Thickness/μm C Mo S O MoS2/C 44.73 20.81 30.23 3.43 1.45 82.3 7.0 1.5 表 3 不同载荷下转移膜及沉积态薄膜的拉曼分峰拟合结果
Table 3 Raman fitting results of transfer film under different load and as-deposited film
Normal load /N D peak Position/cm–1 D peak FWHM/cm–1 G peak Position/cm–1 G peak FWHW/cm–1 ID/IG As-deposited 1 382 332 1 540 145 1.612 5 1 381 163 1 580 100 2.01 10 1 383 232 1 578 116 1.98 15 1 385 218 1 580 109 2.12 20 1 372 157 1 574 115 2.07 25 1 380 209 1 580 106 2.03 -
[1] Donnet C, Erdemir A. Solid lubricant coatings: Recent developments and future trends[J]. Tribology Letters, 2004, 17(3): 389–397 doi: 10.1023/B:TRIL.0000044487.32514.1d
[2] Renevier N M, Hamphire J, Fox V C, et al. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings[J]. Surface & Coatings Technology, 2001, s142–144(1): 67–77
[3] Khare H S, Burris D L. Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide[J]. Tribology Letters, 2014, 53(1): 329–336 doi: 10.1007/s11249-013-0273-0
[4] Fleischauer P D, Lince J R. A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants[J]. Tribology International, 1999, 32(11): 627–636 doi: 10.1016/S0301-679X(99)00088-2
[5] Fox V C, Renevier N, Teer D G, et al. The structure of tribologically improved MoS2-metal composite coatings and their industrial applications[J]. Surface & Coatings Technology, 1999, s116–119(99): 492–497
[6] 周晖, 温庆平, 郝宏, 等.非平衡磁控溅射沉积MoS2-Ti复合薄膜结构与摩擦磨损性能研究[J].摩擦学学报, 2006, 26(2): 183–187 doi: 10.16078/j.tribology.2006.02.019 Zhou Hui, Wen Qingping, Hao Hong, et al. Study of structural andtribological properties of MoS2-Ti composite coatings deposited byunbalanced magnetron sputter[J]. Tribology, 2006, 26(2): 183–187(in Chinese) doi: 10.16078/j.tribology.2006.02.019
[7] Holbery J D, Pflueger E, Savan A, et al. Alloying MoS2, with Al and Au: structure and tribological performance[J]. Surface & Coatings Technology, 2003, s169–170(3): 716–720
[8] Lince J R. Tribology of Co-sputtered nanocomposite Au/MoS2, solid lubricant films over a wide contact stress range[J]. Tribology Letters, 2004, 17(3): 419–428 doi: 10.1023/B:TRIL.0000044490.03462.6e
[9] Li H, Zhang G, Wang L. Low humidity-sensitivity of MoS2/Pb nanocomposite coatings[J]. Wear, 2016, s350–351: 1–9
[10] Prasad S V, Mcdevitt N T, Zabinski J S. Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500℃[J]. Wear, 2000, 237(2): 186–196 doi: 10.1016/S0043-1648(99)00329-4
[11] Zabinski J S, Donley M S, Mcdevitt N T. Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy[J]. Wear, 1993, 165(1): 103–108 doi: 10.1016/0043-1648(93)90378-Y
[12] Zabinski J S, Donley M S, Dyhouse V J, et al. Chemical and tribological characterization of PbO-MoS2 films grown by pulsed laser deposition[J]. Thin Solid Films, 1992, 214(2): 156–163 doi: 10.1016/0040-6090(92)90764-3
[13] Wu Y, Li H, Li J, et al. Preparation and properties of MoS2/a-C films for space tribology[J]. Journal of Physics D Applied Physics, 2013, 46(42): 5301P
[14] Pimentel J V, Polcar T, Cavaleiro A. Structural, mechanical and tribological properties of Mo-S-C solid lubricant coating[J]. Surface & Coatings Technology, 2011, 205(10): 3274–3279
[15] Xu J, Chai L, Li Q, et al. Influence of C dopant on the structure, mechanical and tribological properties of r.f.-sputtered MoS2/a-C composite films[J]. Applied Surface Science, 2016, 364: 249–256 doi: 10.1016/j.apsusc.2015.12.152
[16] Polcar T, Cavaleiro A. Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon[J]. Surface & Coatings Technology, 2011, 206(4): 686–695
[17] 柴利强, 张晓琴, 许佼, 等.MoS2基复合薄膜制备及其结构与摩擦学性能研究[J].摩擦学学报, 2016, 36(1): 1–6 doi: 10.16078/j.tribology.2016.01.001 Chai Liqiang, Zhang Xiaoqin, Xu Jiao, et al. Preparation, structure and tribological properties of MoS2 based composite films[J].Tribology, 2016, 36(1): 1–6(in Chinese) doi: 10.16078/j.tribology.2016.01.001
[18] 赵飞, 逄显娟, 杜三明, 等.MoSx掺杂DLC薄膜的摩擦磨损行为Ⅰ: 载荷的影响[J].摩擦学学报, 2012, 32(5): 516–523 doi: 10.16078/j.tribology.2012.05.006 Zhao Fei, Pang Xianjuan, Du Sanming, et al. Friction and wear behaviors of MoSx -doped DLC films I : Effect of normal load[J].Tribology, 2012, 32(5): 516–523(in Chinese) doi: 10.16078/j.tribology.2012.05.006
[19] 李红轩, 徐洮, 郝俊英, 等.摩擦偶件材料对非晶含氢碳薄膜摩擦学性能的影响[J].摩擦学学报, 2004, 24(6): 483–487 doi: 10.3321/j.issn:1004-0595.2004.06.001 Li Hongxuan, Xu Tao, Hao Junying, et al. Effect of matching materials on the tribological properties of amorphous hydrogenated carbon film[J]. Tribology, 2004, 24(6): 483–487(in Chinese) doi: 10.3321/j.issn:1004-0595.2004.06.001
[20] Polcar T, Evaristo M, Cavaleiro A. Friction of self-lubricating W-S-C sputtered coatings sliding under increasing load[J]. Plasma Processes & Polymers, 2007, 4(Supplement 1): S541-S546
[21] Polcar T, Cavaleiro A. Self-adaptive low friction coatings based on transition metal dichalcogenides[J]. Thin Solid Films, 2011, 519(12): 4037–4044 doi: 10.1016/j.tsf.2011.01.180
[22] Gu L, Ke P, Zou Y, et al. Amorphous self-lubricant MoS2-C sputtered coating with high hardness[J]. Applied Surface Science, 2015, 331: 66–71 doi: 10.1016/j.apsusc.2015.01.057
[23] Golasa K, Grzeszczyk M, Leszczynski P, et al. Multiphonon resonant raman scattering in MoS2[J]. Mrs Online Proceedings Library Archive, 2015, 1726(9): 183
[24] Ferrari A C, Robertson J. Interpretation of raman spectra of disordered and amorphous carbon[J]. Physical Review B Condensed Matter, 2000, 61(20): 14095–14107 doi: 10.1103/PhysRevB.61.14095
[25] Singer I L, Bolster R N, Wegand J, et al. Hertzian stress contribution to low friction behavior of thin MoS2 coatings[J]. Applied Physics Letters, 1990, 57(10): 995–997 doi: 10.1063/1.104276
[26] Kim D W, Kim K W. Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating prepared by reactive sputtering[J]. Wear, 2013, 297(1–2): 722–730 doi: 10.1016/j.wear.2012.10.009
[27] Levita G, Cavaleiro A, Molinari E, et al. Sliding properties of MoS2layers: load and interlayer orientation effects[J]. Journal of Physical Chemistry C, 2014, 118(25): 13809–13816 doi: 10.1021/jp4098099
[28] Zhao X, Perry S S. The role of water in modifying friction within MoS2 sliding interfaces[J]. ACS Applied Materials & Interfaces, 2010, 2(5): 1444–1448
-
期刊类型引用(15)
1. 王伟奇,陈欣仪,赵旋,林鑫,田广科,郭月霞,王锐东,令晓明. 闭合场-磁控溅射制备Ti掺杂MoS_2复合薄膜及其摩擦学性能研究. 润滑与密封. 2024(08): 28-35 . 百度学术
2. 何东青,冯子涵,郑文文,李文生,尚伦霖. Cr_3C_2-NiCr/AlCrN复合涂层高温摩擦学行为研究. 材料导报. 2024(21): 223-229 . 百度学术
3. 李煊禹,吉利,刘晓红,孙初锋,李红轩. MoS_2-C异质复合薄膜的真空超滑行为及其机制研究. 摩擦学学报. 2023(10): 1140-1150 . 本站查看
4. 陈爽,王勇杰,李仕华,辛浩天,李浩天. MoS_2薄膜摩擦因数和磨损量的数学模型. 表面技术. 2022(03): 51-56+75 . 百度学术
5. 党坤,王华,陈维铅,李玉宏,许世鹏. 碳源入射角对超薄四面体非晶碳膜结构和性能的影响. 硅酸盐学报. 2022(05): 1385-1390 . 百度学术
6. 侯德良,肖荣振,孙朝杰,杨兴,王永富,张俊彦. 球形金属表面球磨制备石墨烯薄膜摩擦特性研究. 摩擦学学报. 2022(03): 501-509 . 本站查看
7. 尚伦霖,何东青,李文生,张广安. 高承载高耐磨Cr_3C_2-NiCr/DLC复合涂层制备及摩擦学行为. 摩擦学学报. 2022(04): 751-763 . 本站查看
8. 徐照英,张腾飞,王锦标. 氮化钒涂层的制备及耐腐蚀性能研究进展. 广东化工. 2022(24): 94-96 . 百度学术
9. 李瑞云,杨兴,王永富,张俊彦. 非晶碳薄膜固体超滑设计的滚-滑原则. 摩擦学学报. 2021(04): 583-592 . 本站查看
10. 宁可心,王鹏,江海霞,王毅,柴利强. 含氢无定型碳摩擦转移膜结构演化规律研究. 摩擦学学报. 2021(04): 484-492 . 本站查看
11. 王静轩,王嘉棋,尹延国,张开源. FeS/Cu-Bi铜基滑动轴承材料的干摩擦特性. 轴承. 2020(03): 39-43 . 百度学术
12. 许蓓蓓,王振玉,郭鹏,帅锦涛,叶羽敏,汪爱英,柯培玲. 氮化钒(VN)涂层在不同载荷下的摩擦磨损行为. 摩擦学学报. 2020(05): 656-663 . 本站查看
13. 康皓,郭鹏,蔡胜,李晓伟,段香梅,汪爱英,柯培玲. MoS_2/C复合薄膜多环境摩擦学行为的研究. 表面技术. 2019(06): 229-237 . 百度学术
14. 邱天旭,张继峰,孙露,万霖,申小平. 粉末冶金Fe-5(Cu-10Sn)-石墨-P-MoS_2含油材料的摩擦性能. 粉末冶金材料科学与工程. 2019(05): 459-466 . 百度学术
15. 张开源,尹延国,张国涛,曾庆勤,陈奇. FeS/Cu-Bi铜基轴承材料的摩擦磨损性能. 材料热处理学报. 2018(09): 44-51 . 百度学术
其他类型引用(8)